6 research outputs found

    Exposure to depleted uranium does not alter the co-expression of HER-2/neu and p53 in breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amongst the extensive literature on immunohistochemical profile of breast cancer, very little is found on populations exposed to a potential risk factor such as depleted uranium. This study looked at the immunohistochemical expression of HER-2/neu (c-erbB2) and p53 in different histological types of breast cancer found in the middle Euphrates region of Iraq, where the population has been exposed to high levels of depleted uranium.</p> <p>Findings</p> <p>The present investigation was performed over a period starting from September 2008 to April 2009. Formalin-fixed, paraffin-embedded blocks from 70 patients with breast cancer (62 ductal and 8 lobular carcinoma) were included in this study. A group of 25 patients with fibroadenoma was included as a comparative group, and 20 samples of normal breast tissue sections were used as controls. Labeled streptavidin-biotin (LSAB+) complex method was employed for immunohistochemical detection of HER-2/neu and p53.</p> <p>The detection rate of HER-2/neu and p53 immunohistochemical expression were 47.14% and 35.71% respectively in malignant tumors; expression was negative in the comparative and control groups (p < 0.05).</p> <p>HER-2/neu immunostaining was significantly associated with histological type, tumor size, nodal involvement, and recurrence of breast carcinoma (<it>p </it>< 0.05), p53 immunostaining was significantly associated with tumor size, nodal involvement and recurrence of breast cancer (<it>p </it>< 0.05). There was greater immunoexpression of HER-2/neu in breast cancer in this population, compared with findings in other populations.</p> <p>Both biomarkers were positively correlated with each other. Furthermore, all the cases that co-expressed both HER-2/neu and p53 showed the most unfavorable biopathological profile.</p> <p>Conclusion</p> <p>P53 and HER-2/neu over-expression play an important role in pathogenesis of breast carcinoma. The findings indicate that in regions exposed to high levels of depleted uranium, although p53 and HER-2/neu overexpression are both high, correlation of their expression with age, grade, tumor size, recurrence and lymph node involvement is similar to studies that have been conducted on populations not exposed to depleted uranium. HER-2/neu expression in breast cancer was higher in this population, compared with results on non-exposed populations.</p

    A multivariant secure framework for smart mobile health application

    Get PDF
    This is an accepted manuscript of an article published by Wiley in Transactions on Emerging Telecommunications Technologies, available online: https://doi.org/10.1002/ett.3684 The accepted version of the publication may differ from the final published version.Wireless sensor network enables remote connectivity of technological devices such as smart mobile with the internet. Due to its low cost as well as easy availability of data sharing and accessing devices, the Internet of Things (IoT) has grown exponentially during the past few years. The availability of these devices plays a remarkable role in the new era of mHealth. In mHealth, the sensors generate enormous amounts of data and the context-aware computing has proven to collect and manage the data. The context aware computing is a new domain to be aware of context of involved devices. The context-aware computing is playing a very significant part in the development of smart mobile health applications to monitor the health of patients more efficiently. Security is one of the key challenges in IoT-based mHealth application development. The wireless nature of IoT devices motivates attackers to attack on application; these vulnerable attacks can be denial of service attack, sinkhole attack, and select forwarding attack. These attacks lead intruders to disrupt the application's functionality, data packet drops to malicious end and changes the route of data and forwards the data packet to other location. There is a need to timely detect and prevent these threats in mobile health applications. Existing work includes many security frameworks to secure the mobile health applications but all have some drawbacks. This paper presents existing frameworks, the impact of threats on applications, on information, and different security levels. From this line of research, we propose a security framework with two algorithms, ie, (i) patient priority autonomous call and (ii) location distance based switch, for mobile health applications and make a comparative analysis of the proposed framework with the existing ones.Published onlin

    Occurrence and detection of extended-spectrum &#223-lactamases in Klebsiella isolates in Hilla, Iraq

    No full text
    total of 88 K. pneumoniae strains were isolated from different environmental and clinical samples in Hilla/Iraq during the period from January to July 2003. Primary screening of ß-Lactam resistant isolates showed that 73.8% (65 strains) were resistant to ß-Lactam antibiotics. 58.4% of these strains were ß-lactamase-producers. All the ß- lactamase-producing Klebsiella strains showed multiple-drug resistance to least 8 antibiotics. Klebsiella strains were also tested for their ability to produce extended-spectrum beta-lactamases (ESBLs) using three methods. Determination of minimum inhibitory concentration (MIC) with and without clavulanate was the most accurate method for detection of ESBL-producing isolates, by which 8 (21%) ESBL-producing isolates were detected. Plasmid profile of Klebsiella strains (including ESBL-producers) was detected. The genes encoding for the production of ESBLs and resistance to penicillin, ampicillin, amoxicillin, tetracycline, refampin, and erythromycin were located on conjugative plasmids whereas genes encoding for resistance to cephalothin, cefazolin, cephalexin and gentamycin were located on the chromosome.Key words: Antimicrobial resistance, ß-lactamases, ESBLs, plasmid profile, Klebsiella pneumoniae

    p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1.

    Get PDF
    Mainly regulated at the transcriptional level, the cellular cyclin-dependent kinase inhibitor, CDKN1A/p21(WAF1) (p21), is a major cell cycle regulator of the response to DNA damage, senescence and tumor suppression. Here, we report that COUP-TF-interacting protein 2 (CTIP2), recruited to the p21 gene promoter, silenced p21 gene transcription through interactions with histone deacetylases and methyltransferases. Importantly, treatment with the specific SUV39H1 inhibitor, chaetocin, repressed histone H3 lysine 9 trimethylation at the p21 gene promoter, stimulated p21 gene expression and induced cell cycle arrest. In addition, CTIP2 and SUV39H1 were recruited to the silenced p21 gene promoter to cooperatively inhibit p21 gene transcription. Induction of p21(WAF1) gene upon human immunodeficiency virus 1 (HIV-1) infection benefits viral expression in macrophages. Here, we report that CTIP2 further abolishes Vpr-mediated stimulation of p21, thereby indirectly contributing to HIV-1 latency. Altogether, our results suggest that CTIP2 is a constitutive p21 gene suppressor that cooperates with SUV39H1 and histone methylation to silence the p21 gene transcription.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore