44 research outputs found

    The adaptive potential of early life-stage Fucus vesiculosus under multifactorial environmental change

    Get PDF
    Multiple global and local stressors threaten populations of the bladderwrack Fucus vesiculosus (Phaeophyceae). Baltic F. vesiculosus populations presumably have a lower genetic diversity compared to other populations. I investigated the adaptive potential under multifactorial environmental change in F. vesiculosus germlings. Effects of warming and acidification were crossed during one year at the two levels “present” and “future” (according to the year 2110) at the “Kiel Outdoor Benthocosms” by applying delta-treatments. Effects of warming varied with season while acidification showed generally weak effects. The two factors “ocean acidification and warming” (OAW) and nutrients were crossed showing that nutrient enrichment mitigated heat stress. Germlings previously treated under the OAW x nutrient experiment were subsequently exposed to a simulated hypoxic upwelling. Sensitivity to hypoxia was enhanced by the previous OAW conditions. Difference in the performance of genetically different sibling groups and diversity level were observed indicating an increased adaptive potential at higher genetic diversity. Different sibling groups were analysed under multiple factors to test correlations of genotypic sensitivities. Sensitivity towards warming, acidification and nutrient enrichment correlated positively while sensitivities towards OAW and hypoxia showed a negative correlation demonstrating that genotypes previously selected under OAW are sensitive to hypoxic upwelling. In a literature review, responses of marine organisms to climate change were analysed through different levels of biological organisation showing that climate change has different effects on each single level of biological organisation. This study highlights that global change research requires an upscaling approach with regard to multiple factors, seasons, natural fluctuations, different developmental stages and levels of biological organisation in the light of the adaptive potential

    Buffering and Amplifying Interactions among OAW (Ocean Acidification & Warming) and Nutrient Enrichment on Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) and Their Carry Over Effects to Hypoxia Impact

    Get PDF
    Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July–September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects
    corecore