150 research outputs found

    Epsilon Interactive Virtual User Manual (VUM)

    Get PDF
    © 2018 IEEE. Virtual Reality (VR) is an essential technology in today's internet world. VR is capable of delivering an exceptionally competent understanding of a topic, demonstrating a tool, or even conveying an idea through its incredibly realistic environment. Epsilon is a state of the art skin measurement instrument. Initially developed by London South Bank University research group as a research project. Epsilon has now been marketed and utilised in many organisations worldwide. Nevertheless, Epsilon requires thorough on-site training which is costly and time-consuming. Therefore, there is a real need for a Virtual User Manual (VUM) to train clients on how to operate Epsilon and demonstrate all its features and functionalities. This paper presents the development process of a web-based interactive 3D virtual user manual for the Epsilon medical device. The VUM is a step by step interactive 3D guide that will display to users, trainees and clients all of Epsilon's characteristics with the aid of audio and illustrative text. Additionally, it will direct them on how to operate this skin medical instrument efficiently. The interactive VUM will provide users with an extremely realistic ambience presented in 3D content employing The Internet as a delivery method

    Constructed Wetland Units Filled with Waterworks Sludge for Remediating of Wastewater Contaminated with Congo Red Dye

    Get PDF
    The disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD and dye concentration in the effluents under the variation of detention time (1-5 day) and dye concentration (10-40 mg/L). The maximum removal of dye and COD were 98 and 82% respectively for 10 mg/L of Congo red dye after five-day hydraulic retention time (HRT). The results have shown that the removal of COD and dye concentration significantly increased with higher contact time and lower dye concentration. The values of monitored parameters adopted to evaluate the wastewater quality (i.e. DO, COD and Congo red dye) are satisfied the requirements of irrigation water. The dye concentration variation in the effluent with contact time was formulated efficiently by Grau kinetic model. Functional groups (specified by FT-IR analysis) have a remarkable role in the entrapment of dye on the waterworks sludge bed

    Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect

    Get PDF
    Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids

    The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions

    Get PDF
    We show how a proper use of the Lippmann–Schwinger equation simplifies the calculations to obtain scattering states for one dimensional systems perturbed by N Dirac delta equations. Here, we consider two situations. In the former, attractive Dirac deltas perturbed the free one dimensional Schrödinger Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For completeness, we show that the method to obtain bound states use comparable formulas, although not based on the Lippmann–Schwinger equation. Then, the attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain explicit expressions for the scattering wave functions. Here, we need regularisation techniques that we implement via heat kernel regularisation

    Controlling metal ion migration in contaminated groundwater with Iraqi clay barriers for water resource protection

    Get PDF
    This study investigates the effectiveness of using Iraqi clay as a low-permeability layer to prevent the migration of lead and nickel ions in groundwater-aquifers. Tests of batch operation have been conducted to determine the optimal conditions for removing Pb2+ ions, which were found to be 120 minutes of contact time, a pH of 5, 0.12 g of clay per 100 mL of solution, and an agitation of 250 rpm. These conditions resulted in a 90% removal efficiency for a 50 mg L−1 initial concentration of lead ions. To remove nickel ions with an efficiency of 80%, the optimal conditions were 60 minutes of contact time, a pH of 6, 12 g of clay per 100 mL of solution, and an agitation of 250 rpm. Several sorption models were evaluated, and the Langmuir formula was found to be the most effective. The highest sorption capacities were 1.75 and 137 mg g−1 for nickel and lead ions, respectively. The spread of metal ions was simulated using finite element analysis in the COMSOL multiphysics simulation software, taking into account the presence of a clay barrier. The results showed that the barrier creates low-discharge zones along the down-gradient of the barrier, reducing the rate of pollutant migration to protect the water sources

    Corrosion reduction in steam turbine blades using nano-composite coating

    Get PDF
    The current study aims to reduce the hot corrosion issues in steam turbines for Al-Mussaib thermal power stations. To gain the aim of the study, many experimental tests were conducted by taking a sample from an existing broken steam turbine blade to identify the alloy composition and preparing samples with exact composition by powder metallurgy method, then using the electro-deposition method to coat the prepared samples by three different coating composite materials consists of TiO2 in different ratios (5, 10 and 15) g/l and 5 g/l SiO2 added to Watt's solution. To verify the efficiency of coating, several tests were conducted (surface roughness, hardness, wear, and oxidation test). The obtained results indicated that increasing the Ni-5%SiO2-TiO2 (5, 10 and 15) g/l caused an increase in the coating thickness, which is compatible with increasing the surface roughness. Also, the sample hardness increased after coating, which returned to increasing TiO2 amount (5, 10 and 15) g/l. However, wear resistance for the samples after coating by selected coating composite and 10 g/l TiO2 amount records the highest reduction in the wear of the sample

    Studying the effect of shear stud distribution on the behavior of steel-reactive powder concrete composite beams using ABAQUS software

    Get PDF
    Using the ABAQUS software, this article presents a numerical investigation on the effects of various stud distributions on the behavior of composite beams. A total of 24 continuous 2-span composite beam samples with a span length of 1 m were examined (concrete slab at the top and steel I-section at the bottom). The concrete slab used is made of a reactive powder concrete with a compressive strength of 100.29 MPa. The total depth of each sample was 0.220 m. The samples were separated into four groups. The first group involved 6 specimens with shear connectors distributed into 2 rows with different distances (65, 85, 105, 150, 200, and 250 mm). The second group had the same spacing of shear connectors as the first group except that the shear connectors were distributed with one row along the longitudinal axis. The third group consisted of six specimens with single and double shear connectors distributed along the longitudinal axis. The fourth group included six specimens with one row of shear connectors arranged in a staggered distribution along the longitudinal axis. Results show that the optimum spacing was 105 mm in all groups and the deflection in group four fluctuated up and down due to the non-symmetrical distribution of the shear connectors

    Kinetic and Equilibrium Isotherm Studies for The Removal of Tetracycline from Aqueous Solution Using Engineered Sand Modified with Calcium Ferric Oxides

    Get PDF
    The novel aspect of this research is the fabrication, characterisation, and application of an engineered adsorbent made from quartz sand coated with calcium ferric oxides (QS/CFO) derived from the wastepaper sludge ash (WPSA) for the removal of tetracycline (TC) from synthetic water. Initially, the new adsorbent was fabricated using a Ca/Fe molar ratio, sand/FeCl3 ratio, pH (of synthesising environment), ethylene glycol dose, and temperature of 1:0.75, 1:1, 12, 6 mL/100 mL, and 95℃, respectively. Then, the new adsorbent was applied to treat water having 50 mg/L of TC in batch experiments, taking into account the effects of the contact time (0–180 min), pH of water (2–12), the dose of adsorbent (0.05–0.5 g), and agitation speed (0–250 rpm). The results obtained proved the engineered adsorbent can remove as much as 90% of the TC (adsorption capacity of 21.96 mg/g) within 180 min at an initial pH, adsorbent dosage, and agitation speed of 7, 0.3g per 50 mL, and 200 rpm, respectively. It was also found that the pseudo-second-order model describes the kinetic measurements better than the pseudo-first-order model, which indicates that the TC molecules have been bonded with the prepared sorbent through chemical forces. Furthermore, the intra-particle diffusion model results demonstrated that the diffusion mechanism plays a significant role in TC adsorption; however, it was not the predominant one. Finally, the outcomes of the characterisation analysis proved that the newly formed layer on the quartz sand substantially contributed to the removal of the TC from the contaminated water

    A comprehensive review for groundwater contamination and remediation: occurrence, migration and adsorption modeling

    Get PDF
    Provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agriculture, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching, and pollution. Water resource remediation has become a serious environmental concern since it has a direct impact on many aspects of people’s lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this technique missed sustainability and the new concept of using renewable energy. Permeable reactive barriers (PRBs) have been implemented as an alternative to conventional pump-and-treat systems for remediating polluted groundwater because of their effectiveness and ease of implementation. In this paper, a review of the importance of groundwater, contamination, the biological, physical besides the chemical remediation techniques have been discussed. In this review, the principles of the permeable reactive barrier’s use as a remediation technique have been introduced along with commonly used reactive materials and the recent applications of the permeable reactive barrier in the remediation of different contaminants, such as heavy metals, chlorinated solvents and pesticides. This paper also discusses the characteristic of reactive media and contaminants uptake mechanisms. Finally, remediation isotherms, the breakthrough curves and kinetic sorption models are also being presented. It has been found that groundwater could be contaminated by different pollutants and must be remediated to fit the human, agricultural and industrial needs. PRB technique is an efficient treatment process that is an inexpensive alternative for the pump and treat procedure and represent a promising technique to treat groundwater pollution

    Eco‑friendly remediation of tetracycline antibiotic from polluted water using waste‑derived surface re‑engineered silica sand

    Get PDF
    A new green reactive adsorbent (calcium ferric oxide silica sand (CFO-SS)) made from wastepaper sludge ash and ferric ions was synthesised and shown to remove tetracycline antibiotics (TC) from contaminated water effectively. The synthesised sand was dried at 95 °C, and a series of batch and fixed bed experiments were performed to determine the optimum operating conditions. Results showed that the adsorption capacity of the CFO-SS increases with the concentration gradient between the solid and liquid phases. 0.3 g of the new adsorbent was proven sufficient to remove more than 90% of the TC at a pollutant dose of 50 mg/L in 50 mL of simulated groundwater with an agitation speed of 200 rpm for 3 h. The adsorption isotherm followed the Langmuir isotherm model, with a loading capacity of 21.96 mg/g at pH 7, while the Pseudo second-order model best described the absorption kinetics. The adsorption mechanisms proposed included electrostatic interaction, intraparticle diffusion, hydrogen bonding, and cation-π interactions. Characterisation investigations revealed that the newly precipitated oxides on silica sand play an essential role in TC adsorption support. In fixed-bed experiments, it was discovered that reducing the flow rate and inflow concentration of TC and increasing the sorbent mass significantly extended the lifetime of the produced sorbent in the packed column. The measured breakthrough curves were best fit with the Adams-Bohart and the Clark models, as they provided the highest square root number (R2) values. Finally, considering the efficacy of CFO-SS in TC adsorption performance, it can be noted that the novel synthesised reactive material is an efficient and environmentally friendly material for TC removal, and it presents a potential solution to resolving the challenge of TC-rich groundwater
    • 

    corecore