63 research outputs found

    Cardiac Inflammation, Oxidative Stress, Nrf2 Expression, and Coagulation Events in Mice with Experimental Chronic Kidney Disease

    Get PDF
    Chronic kidney disease (CKD) is known to be associated with cardiovascular dysfunction. Dietary adenine intake in mice is also known to induce CKD. However, in this experimental model, the mechanisms underlying the cardiotoxicity and coagulation disturbances are not fully understood. Here, we evaluated cardiac inflammation, oxidative stress, DNA damage, and coagulation events in mice with adenine (0.2% w/w in feed for 4 weeks)-induced CKD. Control mice were fed with normal chow for the same duration. Adenine increased water intake, urine output, relative kidney weight, the plasma concentrations of urea and creatinine, and the urinary concentrations of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It also decreased the body weight and creatinine clearance, and caused kidney DNA damage. Renal histological analysis showed tubular dilation and damage and neutrophilic influx. Adenine induced a significant increase in systolic blood pressure and the concentrations of troponin I, tumor necrosis factor-α, and interleukin-1β in heart homogenates. It also augmented the levels of markers of lipid peroxidation measured by malondialdehyde production and 8-isoprostane, as well as the antioxidants superoxide dismutase and catalase. Immunohistochemical analysis of the hearts showed that adenine increased the expression of nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. It also caused cardiac DNA damage. Moreover, compared with the control group, adenine induced a significant increase in the number of circulating platelet and shortened the thrombotic occlusion time in pial arterioles and venules in vivo, and induced a significant reduction in the prothrombin time and activated partial thromboplastin time. In conclusion, the administration of adenine in mice induced CKD-associated cardiac inflammation, oxidative stress, Nrf2 expression, and DNA damage. It also induced prothrombotic events in vivo. Therefore, this model can be satisfactorily used to study the cardiac pathophysiological events in subjects with CKD and the effect of drug treatment thereon

    Design and Analysis of Circular Polarized Two-Port MIMO Antennas with Various Antenna Element Orientations

    Get PDF
    This article presents the circularly polarized antenna operating over 28 GHz mm-wave applications. The suggested antenna has compact size, simple geometry, wideband, high gain, and offers circular polarization. Afterward, two-port MIMO antenna are designed to get Left Hand Circular Polarization (LHCP) and Right-Hand Circular Polarization (RHCP). Four different cases are adopted to construct two-port MIMO antenna of suggested antenna. In case 1, both of the elements are placed parallel to each other; in the second case, the element is parallel but the radiating patch of second antenna element are rotated by 180°. In the third case, the second antenna element is placed orthogonally to the first antenna element. In the final case, the antenna is parallel but placed in the opposite end of substrate material. The S-parameters, axial ratio bandwidth (ARBW) gain, and radiation efficiency are studied and compared in all these cases. The two MIMO systems of all cases are designed by using Roger RT/Duroid 6002 with thickness of 0.79 mm. The overall size of two-port MIMO antennas is 20.5 mm × 12 mm × 0.79 mm. The MIMO configuration of the suggested CP antenna offers wideband, low mutual coupling, wide ARBW, high gain, and high radiation efficiency. The hardware prototype of all cases is fabricated to verify the predicated results. Moreover, the comparison of suggested two-port MIMO antenna is also performed with already published work, which show the quality of suggested work in terms of various performance parameters over them

    Molecular epidemiology and genotype distribution of Human Papillomavirus (HPV) among Arab women in the state of Qatar

    Get PDF
    Background: Human Papilloma Virus (HPV) infection is the major cause of cervical cancer worldwide. With limited data available on HPV prevalence in the Arab countries, this study aimed to identify the prevalence and genotypic distribution of HPV in the State of Qatar. Methods: 3008 cervical samples, exclusively of women with Arabic origin residing in Qatar were collected from the Women’s Hospital and Primary Health Care Corporation in Doha, State of Qatar. HPV DNA detection was done using GP5+/6+ primers based real time-polymerase chain reaction (RT-PCR) assay followed by the usage of HPV type specific primers based RT- PCR reactions and Sanger sequencing for genotype identification. Results: Similar prevalence rates of HPV infection was identified in both Qatari and non-Qatari women at 6.2% and 5.9% respectively. HPV prevalence rate of 5.8% and 18.4% was identified in women with normal cytology and in women with abnormal cytology respectively. HPV 81, 11 and 16, in decreasing order were the most commonly identified genotypes. HPV 81 was the most frequent low-risk genotype among women with both normal (74.0%) and abnormal (33.3%) cytology. HPV 16 (4.6%) was identified as the predominant high-risk HPV genotype among women with normal cytology and HPV 16, HPV 18, and HPV 56 (22.2% each) were the most common identified high-risk genotypes in women with abnormal cytology Conclusions: The overall HPV prevalence in Arab women in Qatar was identified as 6.1% with an increased HPV prevalence seen in women with abnormal cytology results and no significant trends seen with age. In contrast to Western countries, we report a varied genotypic profile of HPV with a high prevalence of low-risk HPV genotype 81 among the Arab women residing in Qatar.Weill Cornell Medical College in Qatar; and by a grant from the Qatar National Research Fund (NPRP- 09-344-3-082)

    Prevalence and potential determinants of covid-19 vaccine hesitancy and resistance in qatar: Results from a nationally representative survey of qatari nationals and migrants between december 2020 and january 2021

    Get PDF
    Global COVID-19 pandemic containment necessitates understanding the risk of hesitance or resistance to vaccine uptake in different populations. The Middle East and North Africa currently lack vital representative vaccine hesitancy data. We conducted the first representative national phone survey among the adult population of Qatar, between December 2020 and January 2021, to estimate the prevalence and identify potential determinants of vaccine willingness: acceptance (strongly agree), resistance (strongly disagree), and hesitance (somewhat agree, neutral, somewhat disagree). Bivariate and multinomial logistic regression models estimated associations between willingness groups and fifteen variables. In the total sample, 42.7% (95% CI: 39.5-46.1) were accepting, 45.2% (95% CI: 41.9-48.4) hesitant, and 12.1% (95% CI: 10.1-14.4) resistant. Vaccine resistant compared with hesistant and accepting groups reported no endorsement source will increase vaccine confidence (58.9% vs. 5.6% vs. 0.2%, respectively). Female gender, Arab ethnicity, migrant status/type, and vaccine side-effects concerns were associated with hesitancy and resistance. COVID-19 related bereavement, infection, and quarantine status were not significantly associated with any willingness group. Absence of or lack of concern about contracting the virus was solely associated with resistance. COVID-19 vaccine resistance, hesitance, and side-effects concerns are high in Qatar's population compared with those globally. Urgent public health engagement should focus on women, Qataris (non-migrants), and those of Arab ethnicity.Funding: The study received an Emergency Response Grant Fund from Qatar University (QUERG-CAS-2020-1).Scopu

    Gender Equality and Corporate Social Responsibility in the Middle East

    Get PDF
    This chapter focuses on corporate social responsibility (CSR) in relation to gender equality in the Arab Middle East. It examines the relationship between CSR and gender in the workplace whilst exploring the link between CSR and human resource management (HRM) policies and practices. The chapter first presents some seminal work on gender equality and diversity management, looking at the business case for gender equality within the CSR and HRM contexts, before engaging with relevant work on gender equality in the Arab Middle East. It concludes by offering recommendations on advancing the equality agenda at the macro- and meso-levels, within a framework which recognises the centrality of agency of women, as well as the potential of positive changes through corporations being seen as ‘agents of change’. The chapter advocates for organisational and governmental policies to promote gender equality in the Arab Middle East

    The state of HRM in the Middle East:Challenges and future research agenda

    Get PDF
    Based on a robust structured literature analysis, this paper highlights the key developments in the field of human resource management (HRM) in the Middle East. Utilizing the institutional perspective, the analysis contributes to the literature on HRM in the Middle East by focusing on four key themes. First, it highlights the topical need to analyze the context-specific nature of HRM in the region. Second, via the adoption of a systematic review, it highlights state of development in HRM in the research analysis set-up. Third, the analysis also helps to reveal the challenges facing the HRM function in the Middle East. Fourth, it presents an agenda for future research in the form of research directions. While doing the above, it revisits the notions of “universalistic” and “best practice” HRM (convergence) versus “best-fit” or context distinctive (divergence) and also alternate models/diffusion of HRM (crossvergence) in the Middle Eastern context. The analysis, based on the framework of cross-national HRM comparisons, helps to make both theoretical and practical implications

    Caveolin-1-Enhanced Motility and Focal Adhesion Turnover Require Tyrosine-14 but Not Accumulation to the Rear in Metastatic Cancer Cells

    Get PDF
    Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration was evaluated by shRNA targeting of endogenous caveolin-1 in MDA-MB-231 human breast cancer cells and ectopic expression in B16-F10 mouse melanoma cells. Depletion of caveolin-1 in MDA-MB-231 cells reduced, while expression in B16-F10 cells promoted migration, polarization and focal adhesion turnover in a sequence of events that involved phosphorylation of tyrosine-14 and Rac-1 activation. In B16-F10 cells, expression of a non-phosphorylatable tyrosine-14 to phenylalanine mutant failed to recapitulate the effects observed with wild-type caveolin-1. Alternatively, treatment of MDA-MB-231 cells with the Src family kinase inhibitor PP2 reduced caveolin-1 phosphorylation on tyrosine-14 and cell migration. Surprisingly, unlike for fibroblasts, caveolin-1 polarization and re-localization to the trailing edge were not observed in migrating metastatic cells. Thus, expression and phosphorylation, but not polarization of caveolin-1 favor the highly mobile phenotype of metastatic cells

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore