53 research outputs found

    Free Surface Flow in a Microfluidic Corner and in an Unconfined Aquifer with Accretion: The Signorini and Saint-Venant Analytical Techniques Revisited

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht.Steady, laminar, fully developed flows of a Newtonian fluid driven by a constant pressure gradient in (1) a curvilinear constant cross section triangle bounded by two straight no-slip segments and a circular meniscus and (2) a wedge bounded by two rays and an adjacent film bulging near the corner are studied analytically by the theory of holomorphic functions and numerically by finite elements. The analytical solution of the first problem is obtained by reducing the Poisson equation for the longitudinal flow velocity to the Laplace equation, conformal mapping of the corresponding transformed physical domain onto an auxiliary half-plane and solving there the Signorini mixed boundary value problem (BVP). The numerical solution is obtained by meshing the circular sector and solving a system of linear equations ensuing from the Poisson equation. Comparisons are made with known solutions for flows in a rectangular conduit, circular annulus and Philip’s circular duct with a no-shear sector. Problem (2) is treated by the Saint-Venant semi-inverse method: the free surface (quasi-meniscus) is reconstructed by a one-parametric family, which specifies a holomorphic function of the first derivative of the physical coordinate with respect to an auxiliary variable. The latter maps the flow domain onto a quarter of a unit disc where a mixed BVP for a characteristic function is solved by the Zhukovsky–Chaplygin method. Velocity distributions in a cross section perpendicular to the flow direction are obtained. It is shown that the change of the type of the boundary condition from no slip to perfect slip (along the meniscus) causes a dramatic increase of the total flow rate (conductance). For example, the classical Saint-Venant formulae for a sector, with all three boundaries being no-slip segments, predict up to four times smaller rate as compared to a free surface meniscus. Mathematically equivalent problems of unconfined flows in aquifers recharged by a constant-intensity infiltration are also addressed

    Spectrum of Paediatric Lysosomal Storage Disorders in Oman

    Get PDF
    Objectives: The aim of this study was to look at the spectrum of paediatric lysosomal disorders in Oman. Lysosomal storage disorders (LSDs) are a heterogeneous group of inherited metabolic diseases. Few studies on the birth prevalence and prevalence of LSDs have been reported from the Arabian Peninsula. Methods: We studied 86 children with LSDs diagnosed over a period of nine years, from June 1998 to May 2007. Detailed clinical data, including age of onset, sex, age and mode of first presentation, and presence of consanguinity were collected. Results: Our data showed the combined birth prevalence for all LSDs in Oman to be around 1 in 4,700 live births. Sphingolipidoses was the most common group of disorder encountered (47.7%), followed by neuronal ceroid lipofuscinoses (NCL) (23.2%) and mucopolysaccharidoses (MPS) (23.2%). The proportion of consanguineous marriages in our series was found to be 87.5%. Conclusion: Our data represent the birth prevalence and clinicalspectrum of such disorders in Oman, one of the highly consanguineous societies in the Middle East.

    Rigid Spine Syndrome among Children in Oman

    Get PDF
    Objectives: Rigidity of the spine is common in adults but is rarely observed in children. The aim of this study was to report on rigid spine syndrome (RSS) among children in Oman. Methods: Data on children diagnosed with RSS were collected consecutively at presentation between 1996 and 2014 at the Sultan Qaboos University Hospital (SQUH) in Muscat, Oman. A diagnosis of RSS was based on the patient’s history, clinical examination, biochemical investigations, electrophysiological findings, neuro-imaging and muscle biopsy. Atrophy of the paraspinal muscles, particularly the erector spinae, was the diagnostic feature; this was noted using magnetic resonance imaging of the spine. Children with disease onset in the paraspinal muscles were labelled as having primary RSS or rigid spinal muscular dystrophy. Secondary RSS was classified as RSS due to the late involvement of other muscle diseases. Results: Over the 18-year period, 12 children were included in the study, with a male-to-female ratio of 9:3. A total of 10 children were found to have primary RSS or rigid spinal muscular dystrophy syndrome while two had secondary RSS. Onset of the disease ranged from birth to 18 months of age. A family history was noted, with two siblings from one family and three siblings from another (n = 5). On examination, children with primary RSS had typical features of severe spine rigidity at onset, with the rest of the neurological examination being normal. Conclusion: RSS is a rare disease with only 12 reported cases found at SQUH during the study period. Cases of primary RSS should be differentiated from the secondary type

    Diabesity in the Arabian Gulf: Challenges and Opportunities

    Get PDF
    Diabesity (diabetes associated with obesity) is a major global and local public health concern, which has almost reached an epidemic order of magnitude in the countries of the Arabian Gulf and worldwide. We sought to review the lifestyle trends in this region and to highlight the challenges and opportunities that health care professionals face and attempt to address and correct them. In this regard, we aimed to review the regional data and widely held expert opinions in the Arabian Gulf and provide a thematic review of the size of the problem of diabesity and its risk factors, challenges, and opportunities. We also wished to delineate the barriers to health promotion, disease prevention, and identify social customs contributing to these challenges. Lastly, we wished to address specific problems with particular relevance to the region such as minimal exercise and unhealthy nutrition, concerns during pregnancy, the subject of childhood obesity, the impact of Ramadan fasting, and the expanding role of bariatric surgery. Finally, general recommendations for prevention, evidence-based, and culturally competent management strategies are presented to be considered at the levels of the individual, community, and policymakers

    A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis.

    Get PDF
    Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function

    Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.

    Get PDF
    Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies

    The use of oil-based mud cuttings as an alternative raw material to produce high sulfate-resistant oil well cement

    Get PDF
    Oil-based mud (OBM) is used during the oil well drilling processes to cool drilling pits and remove the cuttings. As a result of these processes, the oil-based mud (OBM) cuttings are produced. The composition of the OBM cuttings depends on the geological conditions of the boreholes and the OBM used during the drilling operation. In this study, the OBM cuttings were used as an alternative material to produce a special cement known as oil-well cement (OWC). Raw meal mixtures were prepared with various percentages of OBM cuttings (5, 11, 13, 15, 18, and 20%). Then they were sintered up to a temperature of 1450 °C, and the resulting cement clinker was ground to produce highly sulfate resistant OWC. The burnability of the raw meal was studied to explore the effect of OBM cuttings on raw meal behavior during the clinkerization process. The results of the study indicated a decrease in the decarbonation temperature and an increase in the rate of clinkerization as the OBM cuttings increased. The produced cement was tested per American Petroleum Institute’s testing procedure for OWC. Also, the cement hydration for 2, 7 and 28 days was carried out to study the behavior of the produced OWC

    Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Candidate gene and genome-wide association studies have both reproducibly identified several common Single Nucleotide Polymorphisms (SNPs) that confer type 2 diabetes (T2D) risk in European populations. Our aim was to evaluate the contribution to T2D of five of these established T2D-associated loci in the Arabic population from Tunisia.</p> <p>Methods</p> <p>A case-control design comprising 884 type 2 diabetic patients and 513 control subjects living in the East-Center of Tunisia was used to analyze the contribution to T2D of the following SNPs: E23K in <it>KCNJ11/Kir6.2</it>, K121Q in <it>ENPP1</it>, the -30G/A variant in the pancreatic β-cell specific promoter of Glucokinase, rs7903146 in <it>TCF7L2 </it>encoding transcription factor 7-like2, and rs7923837 in <it>HHEX </it>encoding the homeobox, hematopoietically expressed transcription factor.</p> <p>Results</p> <p><it>TCF7L2</it>-rs7903146 T allele increased susceptibility to T2D (OR = 1.25 [1.06–1.47], <it>P </it>= 0.006) in our study population. This risk was 56% higher among subjects carrying the TT genotype in comparison to those carrying the CC genotype (OR = 1.56 [1.13–2.16], <it>P </it>= 0.002). No allelic or genotypic association with T2D was detected for the other studied polymorphisms.</p> <p>Conclusion</p> <p>In the Tunisian population, <it>TCF7L2</it>-rs7903146 T allele confers an increased risk of developing T2D as previously reported in the European population and many other ethnic groups. In contrast, none of the other tested SNPs that influence T2D risk in the European population was associated with T2D in the Tunisian Arabic population. An insufficient power to detect minor allelic contributions or genetic heterogeneity of T2D between different ethnic groups can explain these findings.</p
    corecore