5 research outputs found

    Abnormal behavior detection using sparse representations through sequential generalization of k-means

    Get PDF
    The potential capability to automatically detect and classify human behavior as either normal or abnormal events is an important aspect in intelligent monitoring/surveillance systems. This study presents a new high-performance framework for detecting behavioral abnormalities in video streams by utilizing only the patterns for normal behaviors. In this paper, we used a hybrid descriptor, called a foreground optical flow energy (FGOFE), which makes use of two effective motion techniques in order to extract the most descriptive spatiotemporal features in video sequences. The FGOFE descriptor can effectively capture both weak and sudden incidents in a scene. The sequential generalization of k-means (SGK) algorithm was applied in this study to generate the dictionary set that can sparsely represent each signal; in addition, the orthogonal matching pursuit algorithm was utilized to recover high-dimensional sparse features when referring to a few numbers of noisy linear measurements. Using the SGK allows gaining a less complex and quicker implementation compared to other dictionary learning methods. We conducted comprehensive experiments to analyze and evaluate the ability of our framework in detecting abnormalities using several public benchmarks, which contain different abnormal samples and various contextual compositions. The experimental results show that the proposed framework achieved high detection accuracy (up to 95.33%) and low frame processing time (31 ms on average) compared to the relevant related work

    Online video-based abnormal detection using highly motion techniques and statistical measures

    Get PDF
    At the essence of video surveillance, there are abnormal detection approaches, which have been proven to be substantially effective in detecting abnormal incidents without prior knowledge about these incidents. Based on the state-of-the-art research, it is evident that there is a trade-off between frame processing time and detection accuracy in abnormal detection approaches. Therefore, the primary challenge is to balance this trade-off suitably by utilizing few, but very descriptive features to fulfill online performance while maintaining a high accuracy rate. In this study, we propose a new framework, which achieves the balancing between detection accuracy and video processing time by employing two efficient motion techniques, specifically, foreground and optical flow energy. Moreover, we use different statistical analysis measures of motion features to get robust inference method to distinguish abnormal behavior incident from normal ones. The performance of this framework has been extensively evaluated in terms of the detection accuracy, the area under the curve (AUC) and frame processing time. Simulation results and comparisons with ten relevant online and non-online frameworks demonstrate that our framework efficiently achieves superior performance to those frameworks, in which it presents high values for he accuracy while attaining simultaneously low values for the processing time

    U-ASD Net: supervised crowd counting based on semantic segmentation and adaptive scenario discovery

    Get PDF
    Crowd counting considers one of the most significant and challenging issues in computer vision and deep learning communities, whose applications are being utilized for various tasks. While this issue is well studied, it remains an open challenge to manage perspective distortions and scale variations. How well these problems are resolved has a huge impact on predicting a high-quality crowd density map. In this study, a hybrid and modified deep neural network (U-ASD Net), based on U-Net and adaptive scenario discovery (ASD), is proposed to get precise and effective crowd counting. The U part is produced by replacing the nearest upsampling in the encoder of U-Net with max-unpooling. This modification provides a better crowd counting performance by capturing more spatial information. The max-unpooling layers upsample the feature maps based on the max locations held from the downsampling process. The ASD part is constructed with three light pathways, two of which have been learned to reflect various densities of the crowd and define the appropriate geometric configuration employing various sizes of the receptive field. The third pathway is an adaptation path, which implicitly discovers and models complex scenarios to recalibrate pathway-wise responses adaptively. ASD has no additional branches to avoid increasing the complexity. The designed model is end-to-end trainable. This integration provides an effective model to count crowds in both dense and sparse datasets. It also predicts an elevated quality density map with a high structural similarity index and a high peak signal-to-noise ratio. Several comprehensive experiments on four popular datasets for crowd counting have been carried out to demonstrate the proposed method's promising performance compared to other state-of-the-art approaches. Furthermore, a new dataset with its manual annotations, called Haramain with three different scenes and different densities, is introduced and used for evaluating the U-ASD Net

    PEW: prediction-based early dark cores wake-up using online ridge regression for many-core systems

    Get PDF
    Future many-core systems need to address the dark silicon problem, where some cores would be turned off to control the chip's thermal and power density, which effectively limits the performance gain from having a large number of processing cores. Task migration technique has been previously proposed to improve many-core system performance by moving tasks between active and dark cores. As task migration imposes system performance overhead due to the large wake-up latency of the dark cores, this paper proposes a prediction-based early wake-up (PEW) to reduce the dark cores' wake-up latency during task migration. A window-based online ridge regression (RR) is used as the prediction model. The prediction model uses the past window's thermal, power, and core status (i.e., active or dark) to predict the future core temperatures at run-time. If task migration is predicted in the next control period, the proposed PEW puts the dark cores in a power state with low wake-up latency. Thus, the proposed PEW reduces the time for the dark cores to start executing the tasks. The comparison results show that our proposed PEW reduces the completion time by up to 7.9% and 4.1% compared to non-early wake-up (NoEW) and a fixed threshold wake-up (FEW), respectively. It also shows that the proposed PEW increases the MIPS/Watt by up to 5.5% and 2.3% over NoEW and FEW, respectively. These results show that the proposed PEW improves the many-core system's overall performance in terms of reducing dark cores' wake-up latency and increasing the number of executed instructions per Watt

    Transfer deep learning along with binary support vector machine for abnormal behavior detection

    No full text
    Today, machine learning and deep learning have paved the way for vital and critical applications such as abnormal detection. Despite the modernity of transfer learning, it has proved to be one of the crucial inventions in the field of deep learning because of its promising results. For the purpose of this study, transfer learning is utilized to extract human motion features from RGB video frames to improve detection accuracy. A convolutional neural network (CNN) based on Visual Geometry Group network 19 (VGGNet-19) pre-trained model is used to extract descriptive features. Next, the feature vector is passed into Binary Support Vector Machine classifier (BSVM) to construct a binary-SVM model. The performance of the proposed framework is evaluated by three parameters: accuracy, area under the curve, and equal error rate. Experiments performed on two different datasets comprising highly different context abnormalities accomplished an accuracy of 97.44% and an area under the curve (AUC) of 0.9795 for University of Minnesota (UMN) dataset and accomplished an accuracy of 86.69% and an AUC of 0.7987 for University of California, San Diego Pedistrain1 (UCSD-PED1) dataset. Moreover, the performance of the pre-trained network VGGNet-19 with handcrafted feature descriptors and with other CNN pre-trained networks, respectively, has been investigated in this study for abnormal behavior detection. The results demonstrated that VGGNet-19 has better performance than histogram of oriented gradients, background subtraction, and optical flow. In addition, the VGGNet-19 shows higher detection accuracy than other pre-trained networks: GoogleNet, ResNet50, AlexNet, and VGGNet-16
    corecore