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ABSTRACT Future many-core systems need to address the dark silicon problem, where some cores would
be turned off to control the chip’s thermal and power density, which effectively limits the performance gain
from having a large number of processing cores. Task migration technique has been previously proposed to
improve many-core system performance by moving tasks between active and dark cores. As task migration
imposes system performance overhead due to the large wake-up latency of the dark cores, this paper proposes
a prediction-based early wake-up (PEW) to reduce the dark cores’ wake-up latency during task migration.
A window-based online ridge regression (RR) is used as the prediction model. The prediction model uses
the past window’s thermal, power, and core status (i.e., active or dark) to predict the future core temperatures
at run-time. If task migration is predicted in the next control period, the proposed PEW puts the dark cores
in a power state with low wake-up latency. Thus, the proposed PEW reduces the time for the dark cores to
start executing the tasks. The comparison results show that our proposed PEW reduces the completion time
by up to 7.9% and 4.1% compared to non-early wake-up (NoEW) and a fixed threshold wake-up (FEW),
respectively. It also shows that the proposed PEW increases the MIPS/Watt by up to 5.5% and 2.3% over
NoEW and FEW, respectively. These results show that the proposed PEW improves the many-core system’s
overall performance in terms of reducing dark cores’ wake-up latency and increasing the number of executed
instructions per Watt.

INDEX TERMS Dark silicon, many-core systems, task migration, dynamic voltage frequency scaling
(DVFS), ridge regression, early wake-up, dark core wake-up latency.

I. INTRODUCTION
The key concept of increasing computing circuits perfor-
mance was increasing the processor frequency guided by
Dennard scaling [1]. However, around 2005, Dennard scaling
ended, where the power per transistor could no longer scale
downwith the scaling of fabrication technology. This led to an
end to increasing the frequency of single-core processors due
to the high power density. To overcome this problem, many-
core systems were introduced by integrating more cores
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with lower operating frequencies into the processor’s chip to
improve the overall computing performance.

Adding more cores by reducing the technology size,
according to Moore’s law [2], increases the total power of
many-core systems that resulted in higher chip temperatures.
Thus, only a part of the many-core system can be in an
active state (i.e., turned on) while the rest should remain in
a dark state (i.e., turned off). Turning off some cores will
limit the performance gain from the increasing number of
cores in many-core systems. This limitation from using all the
processing cores is called the dark silicon problem [3], which
is expected to be a major issue in future many-core systems.
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According to Ref. [3], [4], over half of the cores in
many-core system-on-chip (MCSoC) would be dark cores in
8-nm technologies. This prediction led researchers to identify
techniques for the dark silicon problem to improve the perfor-
mance of many-core systems under either power budget con-
straints [5]–[14] or thermal constraints [15]–[19]. To avoid
a run-time thermal violation, most of these techniques use
dynamic thermal management (DTM), such as task migration
and dynamic voltage frequency scaling (DVFS). However,
the techniques that used task migration avoid migrating tasks
to dark cores due to the high wake-up latency of the dark
cores, where the dark cores need a longer time to turn on all
core components that were previously off in the dark state.
Previous studies in Ref. [18], [19] show that migrating tasks
from active to dark cores can improve the many-core system
performance. However, the dark cores’ wake-up latency is
significant as dark cores need a longer time to be ready to run
the upcoming tasks. In a dark core state, all core components
are off and need time to be back to operate normally. Studies
in Ref. [20], [21] proposed an early wake-up to address the
wake-up latency of the dark cores. However, these studies use
a fixed wake-up threshold, which may not suit high thermal
fluctuating applications.

This paper proposes a prediction-based early wake-up
(PEW) technique to reduce the wake-up latency impact of
dark cores during taskmigration. The proposed PEW consists
of two parts: online ridge regression (RR) and early wake-
up (EW) algorithm. The online RR is used as a prediction
model to predict the future core temperatures at run-time
every predefined time called control period. Meanwhile,
the EW algorithm is used to predict the likelihood of task
migration in the next control period based on the predicted
cores’ temperatures. The proposed PEW sets the dark core
power state to the one with a lower wake-up latency if task
migration is expected to be used in the next control period.
This reduces the time for the cores to start executing the tasks,
which collectively improves the many-core system’s overall
performance. In summary, the contributions of this paper are
as follows:
• This paper presents the PEW technique to reduce
the dark cores’ wake-up latency impact during task
migration.

• The online RR is used as a prediction model to predict
cores’ temperatures in the next control period.

• The EW algorithm is used to put the dark cores in
a power state with low wake-up latency based on the
predicted temperatures.

• A comprehensive study using compute- and memory-
intensive real-world applications has been conducted to
validate the proposed PEW technique.

The remainder of this paper is structured as follows.
Related works are discussed in Section II. The system model
and problem definition are presented in Section III. The
methodology of the proposedwork is described in Section IV,
while the performance of the proposed work is evaluated

in Section V. Finally, the conclusion and future work are
presented in Section VI.

II. RELATED WORK
The increased power densities in many-core systems due to
technology node shrinking has resulted in the so-called dark
silicon problem. The dark silicon problem limits performance
gain from using all available cores in a many-core sys-
tem [22]. This problem has received a lot of attention in recent
years as a significant many-core systems issue that requires
careful attention. Many techniques for optimizing the perfor-
mance of dark siliconmany-core systems have been proposed
in recent years. These performance optimization techniques
can be categorized into performance optimization under the
power constraint and performance optimization under the
thermal constraint.

The power constraints techniques use thermal design
power (TDP), which is a fixed per-chip power budget
[5], [8]–[10] or thermal safe power (TSP), which is a fixed
per-core power budget [6], [7] to avoid thermal violations.
However, the use of the power budget can cause chip ther-
mal violations since transient temperature and heat transfer
between cores are excluded [23]. In contrast, the thermal
constraint techniques consider the transient temperatures and
heat transfer between the cores to prevent chip thermal vio-
lations. In thermal constraint techniques, task migration is
one of the DTM techniques often used to balance the chip’s
thermal and prevent thermal violations at run-time. However,
migrating the task to a dark core imposes an overhead due to
the dark core wake-up latency. As our proposed work focuses
on reducing the dark cores wake-up latency due to the task
migration, the following paragraphs present related works
that used task migration to maximize performance for dark
silicon many-core systems.

To improve dark silicon many-core systems performance,
some techniques use task migration and application mapping.
Shafique et al. [17] introduced DaSiM, a variability-aware
management technique for dark silicon many-core systems.
DaSiM models the variations of core-to-core leakage power.
It uses thread mapping and dark silicon patterning to activate
or boost more cores by reducing the maximum temperature.
DaSiM provides a lightweight prediction technique to predict
the thermal distribution of a certain mapping and patterning
solution at run-time. To handle thermal violation, DaSiM uses
power-gating or task migration.

Some studies used a combination of DVFS and task
migration for maximizing the dark silicon many-core perfor-
mance. Hanumaiah et al. [24] proposed a run-time schedul-
ing technique to improve many-core system performance.
This technique uses task migration to allocate tasks to cores
at run-time. During the first period of the task migration,
it sets the DVFS levels of cores to a maximum level that
does not violate the safe chip temperature. In a similar work,
Wang et al. [9], [25] introduced a run-time thermal manage-
ment technique to improve many-core system performance.
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Based on model predictive control (MPC) decisions, this
technique use task migration to balance the chip’s thermal by
migrating tasks between active cores. DVFS is used instead
if task migration cannot be used.

The aforementioned techniques avoid task migration to
dark cores due to the high wake-up latency of dark cores.
However, migrating tasks among active cores may increase
the migration overhead. For example, if two active cores
exchange the tasks between them to balance the temperature,
the task migration overhead will be twice. In contrast, migrat-
ing tasks from active to dark cores reduces this overhead
by half. Some studies used dark cores to migrate the tasks.
Studies in Ref. [26]–[29] used a virtual task migration to
pattern the active and dark cores for optimizing the commu-
nication and computation performance of dark silicon many-
core systems. These techniques move the location of dark
cores and not the actual tasks. Dark cores are used as bubbles
to distribute the active cores’ heat. In Ref. [19], a technique
for optimizing dark silicon many-core systems called DTaPO
was introduced. DTaPO uses task migration to swap the tasks
between the active and dark cores to maintain high overall
system performance and keep themany-core system tempera-
ture within a safe thermal operating range. However, all these
studies did not provide a solution for the issue of wake-up
latency of dark cores due to task migration.

A scheduling technique to optimize system perfor-
mance under thermal constraint by reducing the wake-
up time needed for the task migration was proposed by
Bashir et al. [20]. Based on offline thermal results, the pro-
posed technique estimates the time needed to reach the
threshold temperature to put the sleeping cores in the
idle mode before performing task migration. However, this
technique is not suitable for uncharacterized applications.
In another work, Bashir et al. [21] proposed an improved
technique suitable for run-time performance optimization.
In this technique, the temperature is sensed at run-time, and
task migration is to move the tasks to dark cores to address
the thermal violation. These works use early switching the
dark cores to idle mode and depend on a fixed early wake-
up threshold. Although the cores in idle mode can run the
upcoming tasks immediately, early switching to idle mode
may cause more performance degradation due to more fre-
quent DTM calls. Moreover, using a fixed wake-up threshold
may not be suitable for applications that have high thermal
fluctuation.

This paper provides a solution for dark cores wake-
up latency overhead during task migration by proposing a
prediction-based early wake-up (PEW) technique. Instead
of using a fixed wake-up threshold, the proposed technique
uses a prediction model to determine when to wake up the
dark cores. An online sliding window-based ridge regres-
sion (RR) is used as the prediction model. If task migration
is expected to be used in the next control period, the early
wake-up (EW) algorithm uses the core’s power states to put
the dark cores in a power state with low wake-up latency
(∼10 µs). Thus, it reduces the time for the dark cores to start

running the tasks to improve the many-core system overall
performance.

III. SYSTEM OVERVIEW AND PROBLEM DEFINITION
This section presents the dark silicon many-core system
model, a background on core power states, as well as problem
definition and formulation.

FIGURE 1. An overview of the system model.

A. SYSTEM MODEL
The system model is presented in Fig. 1. The many-core sys-
tem consists of 64 homogeneous cores. The many-core sys-
tem supports preemptable tasks so that a task can be stopped
and moved to another core to continue the execution. As this
study targets the dark silicon many-core system, we assume
that only half of the cores can be activated simultaneously.
The active and dark cores were patterned like a chessboard
so that dark cores surround each active core for better heat
dissipation [23]. Despite that the chessboard pattern adds one
hop for each active core to the communication latency, it has
a low peak chip temperature compared to the contiguous
pattern [19].

DTaPO [19] is used to continuously tracks the many-core
system status. Specifically, it monitors the active and dark
cores’ locations, voltage/frequency level, power, and tran-
sient temperature. DTaPO swaps the active and dark cores
locations using the task migration to manage the thermal
violation. In case no thermal headroom is available, it reduces
the voltage/frequency level using the DVFS. For more details
about DTaPO, refer to Ref. [19].

B. CORE C-STATES
Modern many-core processors are designed to support a set
of low-power states called C-states [30] to reduce power
consumption. C-states are designated by the letters C0, C1,
C2, . . . , Cn, where the processor’s designer decides the value
of n. The active state is C0, in which the core is in active
mode. As the C-state progresses, further power-saving steps
are taken, such as turning off more core components such as
caches.

According to the ACPI standard [30], as shown in Fig. 2,
the C1 state lowers the core voltage and turns off the core’s
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FIGURE 2. Core power states.

clock while preserving the L1/L2 cache contents. In the
C2 state, the L1/L2 cache contents are flushed to the last
level cache (LLC) cache. The core is completely dark or off
in the C3 state. However, turning off more core components
will increase the cores’ time to return to a fully operational
state (C0). The proposed technique assumes that our many-
core system supports the C0, C1, and C3 power states.

C. PROBLEM DEFINITION
Migrating tasks to dark cores causes performance degradation
due to the substantial wake-up latency of the dark core. Fig. 3
illustrates that migrated tasks should wait until the dark cores
are ready to execute them. Fig. 3a shows that when the dark
core was in C3 state (dark state), the task migrated at time
tm should wait until the starting time ts. Thus, reducing the
task waiting time Wt = ts − tm improves the overall system
performance. The proposed PEW technique aims to reduce ts
by putting the dark cores in a power state with low wake-up
latency, i.e., C1 state, just before the task migration at tm.
Thus, the dark core will start executing the migrated task
earlier, as shown in Fig. 3b. This minimizes the Wt of the
migrated task and improves the overall performance of a
many-core system. Our aim can be mathematically expressed
as follows:

MinimizeWt :| ts − tm |→ 0 (1)

IV. PROPOSED TECHNIQUE: PEW
The proposed PEW consists of a prediction model and early
wake-up (EW) algorithm. Fig. 4 shows how the proposed
technique is integrated into the system model. The proposed
PEW uses ridge regression (RR) as a prediction model to
predict the core’s temperature. The prediction model uses the
current core’s status (i.e., active/dark), power, and thermal
to predict the core’s temperature in the next control period.
Based on the predicted temperatures, the proposed EW algo-
rithm predicts whether there will be a migration in the next
control period. If migration is predicted in the next control
period, it will put the dark cores in a power state with a low
wake-up latency. Thus, it reduces the waiting time for the
dark cores to be ready for new coming tasks and improves
the overall performance. On the other hand, if it predicts no

FIGURE 3. Illustration of task waiting time when no early wake-up is
used and when early wake-up is used.

FIGURE 4. Integrating the proposed PEW into the system model.

migration in the next control period, it will leave the dark
cores in a power state that saves power.

A. PREDICTION MODEL
Linear regression is one of the most widely used techniques
for predictive modeling. It tries to find a linear relationship
between the inputs (independent variables) and the output
(dependent variable) according to the following formula:

Y = Xβ + ε (2)

where Y is the dependent variable and X is an n × p matrix
representing the independent variables, where n is the num-
ber of samples and p is the number of features. Vector β
represents the regression coefficients. Vector ε represents the
random errors, which are the residuals that are not explained
by theXβ term. In this work, a type of linear regression called
ridge regression [31] is used as a prediction model. The linear
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prediction model is used because the changes in the transient
temperature are linear in the short control period < 1 ms.

1) RIDGE REGRESSION
Ridge regression (RR) [31] is a type of multiple linear
regression represented by Eq. (2). It is used when there is
a correlation between the independent variables called the
multicollinearity problem [32]. It adds a penalty of a squared
magnitude of the coefficients to the loss function to overcome
the multicollinearity problem:

min
β
{(Y − Xβ)>(Y − Xβ)+ λ‖β‖2} (3)

where ‖β‖2 =
∑p

j=1 β
2 is the penalty term, and λ is the

regularization parameter that represents the penalty control.
Ridge regression becomes ordinary linear regression when
λ→ 0.
Ridge regression was chosen in our work because it fits our

regression problem, where there is a correlation between the
independent variables, i.e., the current temperature, power,
and cores status (i.e., active/dark). Lasso regression may also
be used to eliminate the collinearity in a large number of
independent variables by selecting a subset of them.However,
it may eliminate some important collinear variables that may
affect the prediction accuracy, especially when the number
of independents variable is small, as in our prediction system
model.

2) ONLINE RIDGE REGRESSION
The ridge regression uses all available data samples to make
an accurate prediction. However, using all data samples is
computationally intensive and infeasible for online prediction
where the ridge regression has O(np2) time complexity [33].
In highly fluctuating input data such as the core’s temper-
ature, the old data samples may be worthless. Therefore,
considering only the last data samples using a sliding window
will reduce the time complexity since:

n = min(m,w) (4)

wherem represents all data samples, and w is the sliding win-
dow size. The sliding window starts to move when the data
samples are larger than the window size. The time complexity
now depends onw and p. This is suitable for our online system
model because it has only three independent variables (p) and
w is small.

Algorithm 1 shows the pseudo-code of the online
ridge regression. It receives the transient temperature (T ),
power (P), and status (active or dark) (S) of all cores k ,
where T , P, and S are 1× k vectors. These vectors are stored
in Temp, Pow, and Stat buffers (lines 2-4). The length of
each buffer represents all samples m (line 5). The samples
that are used in regression fitting n are determined based
on the window size. If all input samples m are still less
than the window size, all samples are used as an input to
ridge regression. Otherwise, only the last window samples
are used (lines 6). The n samples are used to fit the ridge

regression model (line 7). The fitted model is used the current
temperature, power, and core status to predict the future cores
temperature (Tp) (line 8). The predicted temperatures are
used by the EW algorithm (line 9).

Algorithm 1 Online Ridge Regression
Input: w, T , P, and S
Output: Tp

1 while true do
2 Temp← T
3 Pow← P
4 Stat ← S
5 m = length(Temp)
6 n = min(m,w)
7 RR← fit(Tempn×k ,Pown×k ,Statn×k )
8 Tp← RR(T ,P,S)
9 EW ← Tp
10 end

TABLE 1. Definition of the EW algorithm’s symbols.

B. PROPOSED PREDICTION-BASED EARLY WAKE-UP
This subsection presents the second component of the pro-
posed PEW, which is the EW algorithm. All symbols used
in our proposed EW algorithm are defined in Table 1. Algo-
rithm 2 describes the proposed EW algorithm in detail. The
proposed algorithm receives the predicted temperatures Tp
from the prediction model. Also, it receives the set of all
active cores 3 = {a0, . . . , ak−1}, the set of all dark cores
0 = {d0, . . . , dk−1}, the threshold temperature Tth and the
safe margin θ .

In each control period, the proposed algorithm reads the
predicted temperature of each active core Tp[ai]. If the pre-
dicted temperature of the active core is higher than the thresh-
old temperature, it is most likely that DTaPO will do either
task migration or DVFS in the next control period. Thus,
the proposed EW algorithm reads the predicted temperature
of a destination dark core Tp[di]. If the predicted temperature
of the destination dark core is lower than the threshold tem-
perature by θ or the temperature of dark cores is lower than
the active core by θ (this condition statement is the conditions
statement used by DTaPO [19] to do task migration), it sets
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H [ti] = 1 to indicate that the task exceeded the thresh-
old temperature is a movable task (lines 4-5). Otherwise,
it marks the task that exceeded the threshold temperature
as a non-movable task by setting H [ti] = 0 (line 8). If all
the tasks in H are movable, the proposed algorithm puts
the dark cores in the C1 power states to reduce the wake-
up latency of the dark cores (lines 12-14). Otherwise, it will
leave the dark cores in the C3 power state to save more power
(lines 15-17).

Algorithm 2 Early Wake-up (EW) of Dark Cores
Input: 3, 0, Tp, Tth, and θ
Output: Power states of the dark cores

1 while true do
2 for ∀ ai ∈ 3 do
3 if Tp[ai] > Tth then
4 if (Tp[di] < Tth − θ ) || (Tp[di] < Tp[ai]− θ )

then
5 H [ti] = 1
6 end
7 else
8 H [ti] = 0
9 end
10 end
11 end
12 if H [ti] = 1 ∀ ti ∈ H then
13 Put all darks cores in C1 state
14 end
15 else
16 Leave all dark cores in C3 state
17 end
18 end

C. COMPLEXITY ANALYSIS
The time complexity of ridge regression is O(np2) [33]. The
proposed PEW uses sliding ridge regression, where p = 3
is kept constant, whereas n is a small sample represented by
window size (w). Therefore, time complexity in our online
ridge regression is O(w). For the EW algorithm, it needs
to check the predicted temperature of all cores. Therefore,
the time complexity depends on the number of cores (k).
Thus, the time complexity is O(k).

The space complexity of ridge regression is O(wp + w).
As ridge regression needs to store matrices X and Y as w× p
and n× 1 matrix, respectively, to find β according to Eq.(3).
Therefore, the online ridge regression space complexity is
also O(w). For the space complexity of EW, the indices of
active and dark cores and a 1× k vector of predicted temper-
ature needs to be stored. Therefore, the space complexity of
the EW algorithm is O(k).
The overall complexity of the proposed PEW is the sum-

mation of online ridge regression and EW algorithm com-
plexities that are computed one after another. Hence, the time

and space complexity of the proposed PEW technique are
linear.

V. EXPERIMENTAL EVALUATION
Many experiments were conducted to evaluate our proposed
work. The following subsections show how the experiments
are set up, the comparison results, and the discussion of the
comparison results.

FIGURE 5. The simulated many-core system floorplan.

A. EXPERIMENTAL SETUP
Our proposed work was evaluated on a many-core system
that consists of 64-core, where 32-core are active cores, and
32-core are dark cores. These cores are connected using an
8 × 8 mesh network-on-chip (NoC). All the cores share
the same instruction set architecture (ISA) (homogeneous
microarchitecture) and can operate at different frequencies
(heterogeneous frequency). Every core can run at a maximum
frequency of 4 GHz. The floorplan of the simulated system is
shown in Fig. 5. Every core has a size of 2.95 mm× 2.95 mm
according to McPAT [34] modeling for 22-nm technology.
Every core has a 32 KB private L1 data cache, 32 KB private
L1 instruction cache, and 512 KB private L2 cache. All eight
cores share an 8 MB L3 cache. Table 2 shows the summary
of the system setup.

TABLE 2. Summary of the system setup.

Fig. 6 shows the experimental setup of the proposed work.
LifeSim simulation tool [35] for many-core systems was
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FIGURE 6. Experimental setup of the proposed technique.

FIGURE 7. Package layers of a ceramic ball grid array (CBGA)(adapted
from Fig. 2 in Ref. [38]).

used. LifeSim is a tool that integrates Sniper [36] with
HotSpot [37] thermal simulator. Sniper is an architectural
x86-64 many-core simulator (including the power framework
McPAT). It is faster than cycle-accurate simulations with a
25% average performance error compared to actual hardware.
McPAT is commonly used for modeling integrated power,
area, and timing because it provides comprehensive design
space exploration for multi/many-core processor configura-
tions. HotSpot is the most widely used thermal simulator.
It is built on the widely used stacked-layer packaging scheme
used in modern very-large-scale integration (VLSI) systems,
as shown in Fig. 7.

As Sniper does not support core power-gating, Sniper’s
scheduler was modified to assign the tasks to the active
cores only using the core mask pattern. Also, McPAT was
modified to estimate only the power of caches and memory
management unit for the C1 power state as only the caches are
active in the C1 state. The power of the dark state (C3 state)
is not considered. The wake-up latency for C1 and C3 are
assumed to be 10µs and 200µs, respectively. These values
are chosen according to Linux’s intel_idle driver for Nehalem
microarchitecture as our simulation’s cores are Nehalem-
based. Thus, only 10µs is added to the execution time for
every migration that was predicted correctly, i.e., wake-up

TABLE 3. HotSpot thermal configuration.

from C1 state. On the other hand, 200µs is added to the
execution time for every migration that was mispredicted,
i.e., wake-up from C3 state.

System configurations, such as the number of cores, floor-
plan, caches, are used to configure the simulated system.
To generate performance traces, Sniper runs applications
from the SPLASH-2 [39] and PARSEC [40] benchmark
suites. These traces are used by McPAT to estimate each
core’s power consumption. HotSpot estimates the transient
temperature using the estimated power traces. The HotSpot
configuration parameters are listed in Table 3. In each control
period, DTaPO is used to schedule the tasks and do thermal
management based on the transient temperature generated
from the Hotspot. To predict the temperature of each core in
the next control period, the ridge regression uses the transient
temperature generated from HotSpot, the power generated
from McPAT, and the core states from DTaPO. Based on the
predicted temperature, the early wake-up algorithm decides
whether to wake up the dark cores.

In our experiment, compute- and memory-intensive appli-
cations from SPLASH-2 and PARSEC benchmark suites are
used to evaluate the efficiency of the proposed technique.
High-temperature tasks in compute-intensive applications
can rapidly increase the core temperature, making them good
candidates for validating our proposed algorithm. In contrast,
memory-intensive applications have a large number of mem-
ory accesses, showing the task migration overhead due to
cache misses. The experimental evaluation was done in two
phases; preliminary study and comprehensive study. In both
studies, the value of θ is set to 5% of the threshold temper-
ature, and the control period interval length is set to 1 ms.
To eliminate the experiment results’ randomness, the results
reported in this study are the average results of conducting
the experiment ten times.

A preliminary study was carried out by executing a mix
of four 8-thread applications: Bodytrack, Ocean, Radix, and
Blackscholes. The threshold temperature was set to 70 ◦C.
The threshold temperature was chosen based on the tempera-
ture profile of the studied application on the target platform.
There may be no migration when threshold temperature is
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too high. Also, there may not be any cold cores to migrate to
when threshold temperature is too low. For more details on
the impact of threshold temperature on task migration, please
refer to Ref. [19].

The preliminary study was carried out to determine
the best-fixed threshold for fixed threshold early wake-up
(FEW) [21] technique and evaluate the performance of the
proposed PEW technique under various prediction accuracy
scenarios. In this preliminary study, a pre-known future tem-
perature generated from the Hotspot simulator was used as an
input to the proposed EW algorithm. These pre-known future
temperatures represent the prediction model with 100% accu-
racy, which is the best-case scenario. In the other scenarios,
this accuracy was reduced 10% each time by introducing a
uniformly distributed random error.

In the second phase, a comprehensive study was carried
out by running eight 32-thread applications: Fluidanimate,
Bodytrack, Cholesky, Blackscholes, Raytrace, FFT, Ocean,
and Swaptions individually. The threshold temperature was
lowered to 65 ◦C to show the efficiency of the proposed work.
The comprehensive study used RR as a prediction model to
predict the future temperature. This predicted temperature
was used as input to the proposed EW algorithm. There is
a trade-off between the prediction accuracy and the window
size. The bigger the window size, the better prediction accu-
racy. However, the prediction overhead will increase as the
window size increase. Therefore, the value of window size
(w) is set to 30, which gives a good prediction accuracy and
low prediction overhead.

The value of the regularization parameter (λ) for RR is set
to 0.2. This value was empirically determined by conducting
experiments and choosing the value with a low average mean
absolute error (MAE). Table 4 shows theMAE for the studied
applications at different regularization parameter (λ) values.
It can be seen that when λ = 0.2, the average MAE for
all the studied applications is the lowest. In the comprehen-
sive study, the computation efficiency in terms of comple-
tion time, power efficiency in terms of million instructions
per second/Watt (MIPS/W), and average temperature were
reported.

TABLE 4. The MAE for the studied applications at different values of λ.

B. COMPARATIVE RESULTS AND ANALYSIS
The proposed prediction-based early wake-up (PEW) was
compared with our previous work that uses a non-early

wake-up technique (NoEW) [19] and with the state-of-the-art
fixed threshold early wake-up (FEW) [21] that uses a fixed
threshold to wake up the dark cores. Moreover, for a fair
comparison, the dark cores are switched to a C1 power state
instead of an idle state in FEW.

FIGURE 8. Relative completion time of the proposed PEW at different
accuracy level, FEW at the different wake-up threshold, and NoEW.

1) PRELIMINARY RESULTS
The results from the preliminary study are shown in Fig. 8.
These results are the relative completion time of executing the
mix of four multi-threaded applications: Bodytrack, Ocean,
Radix, and Blackscholes. The completion time is plotted rel-
ative to the proposed PEW with 100% prediction accuracy
(the best case). The proposed algorithm was evaluated using
different accuracy levels, starting from 100% to 50%. FEW
was also evaluated using two fixed early wake-up thresholds,
2 ◦C (FEW@2 ◦C) and 3 ◦C (FEW@3 ◦C) under the tem-
perature threshold. For the studied application, it is obvious
that the proposed techniques outperform the NoEW by 3.1%
and 1.5% at 100% and 50% accuracy, respectively. Thus,
even at low prediction accuracy, using prediction-based early
weak-up still performs better than without early wake-up.
Moreover, using prediction-based early wake-up at 100%
accuracy outperforms the fixed early wake-up threshold
FEW@2 ◦C and FEW@3 ◦C by 2% and 2.2%, respectively.
In addition, FEW@2 ◦C reduces the completion time by 0.2%
compared to FEW@3 ◦C. Thus, in the comprehensive study,
the fixed early wake-up threshold in FEW was set to 2 ◦C
below the threshold temperature.

2) COMPREHENSIVE RESULTS
In the comprehensive study, RR is used as a prediction model.
Table 5 illustrates the average number of task migrations and
the percentage of wake-up accuracy (i.e., the percentage of
task migration predicted accurately using the EW algorithm).
It also shows the RR prediction model accuracy in terms of
MAE and root mean square error (RMSE) for the cores tem-
peratures. It is obvious that using the prediction model gives
better wake-up accuracy than using a fixed wake-up thresh-
old. On average, the proposed PEW predicts 91.42% of the
task migration accurately compare to 76.62% using a fixed
wake-up threshold. Fig. 9 shows the actual and predicted
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FIGURE 9. Actual and predicted temperature of core 0 for all studied applications.

FIGURE 10. Actual and predicted temperature of cores 1-3 for Blackscholes (a-c) and FFT (d-f) application.

temperature of core 0 for all studied applications. The results
of all cores are not presented because they show similar trend
as shown in Fig. 10, which shows the results of three cores
(core 1-3) for Blackscholes and FFT. Although the prediction

model does not fit well for some applications, the prediction
model can predict well when the temperature exceeded the
threshold temperature (65 ◦C), which is important for the EW
algorithm to make the early wake-up decision.
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TABLE 5. Average number of tasks migration and wake-up accuracy.

FIGURE 11. The ratio of serial and parallel phases of the studied
application.

For the Cholesky and Blackscholes applications, using a
fixed wake-up threshold resulted in a higher wake-up accu-
racy than the prediction model. This is because these appli-
cations have a large percentage of serial phase, as shown
in Fig. 11. For more characteristics of these applications,
refer to Ref. [41]. In the serial phase, these applications run
only one cool thread with a small number of task migrations
so that our prediction model cannot fit well. Although Ray-
trace and FFT also have a large percentage of serial phase,
the serial phase of these applications has a high number of
task migrations. Thus, our prediction model fitted well with
these applications.

The comparison results of the computational and power
efficiency shown in Fig. 12 are relative to the proposed
PEW technique. These results show the comparative results
when executing the nine multi-threaded applications indi-
vidually with the proposed PEW, NoEW, and FEW tech-
niques. The efficiency of computation in terms of relative
completion time is shown in Fig. 12a. In all the studied
applications, the proposed prediction-based early wake-up
(PEW) reduces the completion time by 4.2% on average over
NoEW. Specifically, it reduces the completion time by 2.9%
for Fluidanimate, 7.9% for Bodytrack, 4.1% for Cholesky,
5% for Blackscholes, 5.6% for Raytrace, 5.9% for FFT, 2.5%
for Ocean, and 2.3% for Swaptions.

Moreover, the proposed PEW reduces the completion time
in most studied applications by 0.8% on average over FEW.
Specifically, it shortens the task completion time by 1.1% for
Fluidanimate, 4.1% for Bodytrack, 0.4% for Raytrace, 0.1%
for FFT, 1.6% for Ocean, and 1.3% for Swaptions. FEW
reduces the completion time over the proposed PEW by 1%

FIGURE 12. Relative performance efficiency in terms of completion time
and MIPS/Watt.

for Cholesky and 0.6% for Blackscholes because these appli-
cations have a large percentage of serial phase, as mentioned
previously. In general, the overall completion time of the
studied application is improved because the waiting time (Wt )
of the tasks is reduced. It is worthmentioning that all the com-
parison results are based on assuming the wake-up latency for
dark state 200µs according to Linux’s intel_driver. However,
if the wake-up latency for the dark state is longer like in the
LEAT processor (261.77 ms), the improvement is expected to
be much better.

The comparative results of the power efficiency in terms
of relative MIPS/Watt are shown in Fig. 12b. On average, our
proposed PEW performs better than NoEW and FEW by 3%
and 1%, respectively. In all the studied applications except
for Bodytrack and Cholesky, our proposed PEW increased
the MIPS/Watt by up to 5.5% and 2.3% over NoEW and
FEW, respectively. The lower MIPS/Watt in Bodytrack and
Cholesky is due to the high prediction RMSE for these appli-
cations, as shown in Table 5.

The thermal efficiency was also evaluated, as shown
in Fig. 13. Fig. 13a shows the average, max, and min of the
variation between the coldest and the hottest core. Our pro-
posed PEW, on average, exhibits less temperature variation
than FEW and NoEW. On the other hand, Fig. 13b shows the
average, max, and min of the cores’ transient temperature.
It can be noted that the average temperatures for the three
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FIGURE 13. The average, max, and min of temperature variation between the coldest and hottest core and transient
temperature of all cores.

techniques are identical as all these techniques use identical
thermal management.

3) SIGNIFICANCE TEST
A significance test (t-test) was performed to verify the signif-
icance of the performance improvement in terms of task com-
pletion time. A paired t-test was conducted for the completion
time of our proposed PEW against FEW and NoEW. The
significant level (α) is set to the standard value of 0.05. The
null hypothesis H0 is tested against the alternative hypothe-
sis Ha. H0 assumes that the improvement is not significant,
and Ha assumes that the improvement is significant. The null
hypothesis H0 is rejected if p-value < α. Table 6 shows
the significance test for the proposed technique’s completion
time against FEW and NoEW. It shows that the improvement
when using our proposed PEW against FEW is statistically
significant for most of the studied applications. The improve-
ment is not significant for Cholesky and Blackscoles that
suggests that the prediction model may need to be tuned
to fit these applications, which is beyond the scope of this
paper. The overall improvement when using our proposed
PEW against NoEW is statistically significant for all studied
applications.

TABLE 6. Significant test (t-test) for the proposed technique against FEW
and NoEW.

VI. CONCLUSION
This paper proposes a prediction-based early wake-up (PEW)
for the dark cores technique that utilizes an online sliding
window-based ridge regression (RR) to reduce the dark cores
wake-up latency during the task migration. RR predicts the
future’s core temperatures based on the previous thermal,
power, and core status. Based on these predicted tempera-
tures, the proposed early wake-up (EW) algorithm puts the
dark cores in a power state with low wake-up latency if task
migration is expected in the next control period. Thus, our
proposed PEW reduces the time for the dark cores to start
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running the tasks, which improves the many-core system’s
overall performance. The comparison results show that using
our proposed PEW reduces the task completion time by up to
7.9% and 4.1% compared to non-early wake-up (NoEW) and
using a fixed threshold wake-up (FEW), respectively. It also
shows that using our proposed PEW increases the MIPS/Watt
by up to 5.5% and 2.3% over NoEW and FEW, respectively.
Moreover, a significance test shows that our improvements
are statistically significant for all studied applications except
those that cannot fit well in our prediction model. For future
work, we plan to propose a technique that dynamically tunes
the prediction model parameters (window size and regular-
ization parameter) according to the running application and
to evaluate the impact of chip floorplan on the temperature.
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