79 research outputs found

    Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer

    Get PDF
    The fullerene C60 is commonly applied as the electron transport layer in highefficiency metal halide perovskite solar cells and has been found to limit their open circuit voltage. Through ultra sensitive near UV photoelectron spectroscopy in constant final state mode CFSYS , with an unusually high probing depth of 5 10 nm, the perovskite C60 interface energetics and defect formation is investigated. It is demonstrated how to consistently determine the energy level alignment by CFSYS and avoid misinterpretations by accounting for the measurement induced surface photovoltage in photoactive layer stacks. The energetic offset between the perovskite valence band maximum and the C60 HOMO edge is directly determined to be 0.55 eV. Furthermore, the voltage enhancement upon the incorporation of a LiF interlayer at the interface can be attributed to originate from a mild dipole effect and probably the presence of fixed charges, both reducing the hole concentration in the vicinity of the perovskite C60 interface. This yields a field effect passivation, which overcompensates the observed enhanced defect density in the first monolayers of C6

    Self Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells

    Get PDF
    The unprecedented emergence of perovskite based solar cells PSCs has been accompanied by an intensive search of suitable materials for charge selective contacts. For the first time a hole transporting self assembled monolayer SAM as the dopant free hole selective contact in p i n PSCs is used and a power conversion efficiency of up to 17.8 with average fill factor close to 80 and undetectable parasitic absorption is demonstrated. SAM formation is achieved by simply immersing the substrate into a solution of a novel mole cule V1036 that binds to the indium tin oxide surface due to its phosphonic anchoring group. The SAM and its modifications are further characterized by Fourier transform infrared and vibrational sum frequency generation spectroscopy. In addition, photoelectron spectroscopy in air is used for measuring the ionization potential of the studied SAMs. This novel approach is also suitable for achieving a conformal coverage of large area and or tex tured substrates with minimal material consumption and can potentially be extended to serve as a model system for substrate based perovskite nucleation and passivation control. Further gains in efficiency can be expected upon SAM optimization by means of molecular and compositional engineerin

    Hybrid Perovskite Degradation from an Optical Perspective A Spectroscopic Ellipsometry Study from the Deep Ultraviolet to the Middle Infrared

    Get PDF
    A quantitative analysis of the thermally induced degradation of various device relevant multi cation hybrid perovskite films is performed using spectroscopic ellipsometry, for temperatures between 80 and 120 C. The studied compositions are a triple cation perovskite Cs0.05 MA0.17FA0.83 0.95Pb Br0.17I0.83 3, a Rb containing variant Rb0.05Cs0.05 MA0.17FA0.83 0.90Pb Br0.17I0.83 3, and a methylammonium free Rb0.05Cs0.10FA0.85PbI3 composition. A very wide combined spectral range of 200 nm to 25 amp; 956;m is covered by combining the data from two separate instruments. The relative changes in organic cation concentrations are quantified from the middle infrared molecular absorption bands, leveraging the use of point by point fitting for increased sensitivity. Additionally, the formation of PbI2 and non perovskite amp; 948; CsPbI3 phases is evidenced from Bruggemann effective medium fits to the visible and ultraviolet complex refractive indices. Methylammonium is almost completely depleted from the relevant compositions within 100 to 285 min of thermal annealing. The MA free perovskite degrades faster at intermediate temperatures, which is attributed to phase instability due to the formation of amp; 948; CsPbI3 in addition to PbI

    Enhanced Self Assembled Monolayer Surface Coverage by ALD NiO in p i n Perovskite Solar Cells

    Get PDF
    Metal halide perovskites have attracted tremendous attention due to their excellent electronic properties. Recent advancements in device performance and stability of perovskite solar cells PSCs have been achieved with the application of self assembled monolayers SAMs , serving as stand alone hole transport layers in the p i n architecture. Specifically, phosphonic acid SAMs, directly functionalizing indium tin oxide ITO , are presently adopted for highly efficient devices. Despite their successes, so far, little is known about the surface coverage of SAMs on ITO used in PSCs application, which can affect the device performance, as non covered areas can result in shunting or low open circuit voltage. In this study, we investigate the surface coverage of SAMs on ITO and observe that the SAM of MeO 2PACz [2 3,6 dimethoxy 9H carbazol 9 yl ethyl]phosphonic acid inhomogeneously covers the ITO substrate. Instead, when adopting an intermediate layer of NiO between ITO and the SAM, the homogeneity, and hence the surface coverage of the SAM, improve. In this work, NiO is processed by plasma assisted atomic layer deposition ALD with Ni MeCp 2 as the precursor and O2 plasma as the co reactant. Specifically, the presence of ALD NiO leads to a homogeneous distribution of SAM molecules on the metal oxide area, accompanied by a high shunt resistance in the devices with respect to those with SAM directly processed on ITO. At the same time, the SAM is key to the improvement of the open circuit voltage of NiO MeO 2PACz devices compared to those with NiO alone. Thus, the combination of NiO and SAM results in a narrower distribution of device performance reaching a more than 20 efficient champion device. The enhancement of SAM coverage in the presence of NiO is corroborated by several characterization techniques including advanced imaging by transmission electron microscopy TEM , elemental composition quantification by Rutherford backscattering spectrometry RBS , and conductive atomic force microscopy c AFM mapping. We believe this finding will further promote the usage of phosphonic acid based SAM molecules in perovskite P

    Perovskite CIGS Tandem Solar Cells From Certified 24.2 toward 30 and Beyond

    Get PDF
    We demonstrate a monolithic perovskite CIGS tandem solar cell with a certified power conversion efficiency PCE of 24.2 . The tandem solar cell still exhibits photocurrent mismatch between the subcells; thus optical simulations are used to determine the optimal device stack. Results reveal a high optical potential with the optimized device reaching a short circuit current density of 19.9 mA cm 2 and 32 PCE based on semiempirical material properties. To evaluate its energy yield, we first determine the CIGS temperature coefficient, which is at amp; 8722;0.38 K 1 notably higher than the one from the perovskite subcell amp; 8722;0.22 K 1 , favoring perovskite in the field operation at elevated cell temperatures. Both single junction cells, however, are significantly outperformed by the combined tandem device. The enhancement in energy output is more than 50 in the case of CIGS single junction device. The results demonstrate the high potential of perovskite CIGS tandem solar cells, for which we describe optical guidelines toward 30 PC

    Proton Radiation Hardness of Perovskite Tandem Photovoltaics.

    Get PDF
    Monolithic [Cs0.05(MA0. 17FA0. 83)0.95]Pb(I0.83Br0.17)3/Cu(In,Ga)Se2 (perovskite/CIGS) tandem solar cells promise high performance and can be processed on flexible substrates, enabling cost-efficient and ultra-lightweight space photovoltaics with power-to-weight and power-to-cost ratios surpassing those of state-of-the-art III-V semiconductor-based multijunctions. However, to become a viable space technology, the full tandem stack must withstand the harsh radiation environments in space. Here, we design tailored operando and ex situ measurements to show that perovskite/CIGS cells retain over 85% of their initial efficiency even after 68 MeV proton irradiation at a dose of 2 × 1012 p+/cm2. We use photoluminescence microscopy to show that the local quasi-Fermi-level splitting of the perovskite top cell is unaffected. We identify that the efficiency losses arise primarily from increased recombination in the CIGS bottom cell and the nickel-oxide-based recombination contact. These results are corroborated by measurements of monolithic perovskite/silicon-heterojunction cells, which severely degrade to 1% of their initial efficiency due to radiation-induced recombination centers in silicon.F.L. acknowledges financial support from the Alexander von Humboldt Foundation via the Feodor Lynen program and thanks Prof. Sir R. Friend for supporting his Fellowship at the Cavendish Laboratory. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement number 756962). M.J, A.A.A., E.K., and S.A. acknowledge financial support from the German Federal Ministry of Education and Research (BMBF) via program “Materialforschung für die Energiewende” (grant no. 03SF0540), by the German Federal Ministry for Economic Affairs and Energy (BMWi) through the ‘PersiST’ project (Grant No. 0324037C). T.B. C.A.K. and R.S. acknowledge funding by BMWi through the speedCIGS (grant no. 0324095E) and EFFCIS project (grant no. 0324076D). D.K. and M.C. acknowledge financial support from the Dutch Ministry of Economic Affairs, via The Top-consortia Knowledge and Innovation (TKI) Program ‘‘Photovoltaic modules based on a p-i-n stack, manufactured on a roll-to-roll line featuring high efficiency, stability and strong market perspective’’ (PVPRESS) (TEUE118010) and “Bridging the voltage gap” (BRIGHT) (1721101). K. F. acknowledges the George and Lilian Schiff Fund, the Engineering and Physical Sciences Research Council (EPSRC), the Winton Sustainability Fellowship, and the Cambridge Trust for funding. S.D.S. acknowledges the Royal Society and Tata Group (UF150033). The authors acknowledge the EPSRC for funding (EP/R023980/1). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 841265. A.R.B. acknowledges funding from a Winton Studentship, Oppenheimer Studentship, and funding from the Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Centre in Photovoltaics (CDT-PV). K.G. acknowledges the Polish Ministry of Science and Higher Education within the Mobilnosc Plus program (Grant No. 1603/MOB/V/2017/0)

    Textured interfaces in monolithic perovskite silicon tandem solar cells advanced light management for improved efficiency and energy yield

    Get PDF
    Efficient light management in monolithic perovskite silicon tandem solar cells is one of the prerequisites for achieving high power conversion efficiencies PCEs . Textured silicon wafers can be utilized for light management, however, this is typically not compatible with perovskite solution processing. Here, we instead employ a textured light management LM foil on the front side of a tandem solar cell processed on a wafer with planar front side and textured back side. This way the PCE of monolithic, 2 terminal perovskite silicon heterojunction tandem solar cells is significantly improved from 23.4 to 25.5 . Furthermore, we validate an advanced numerical model for our fabricated device and use it to optically optimize a number of device designs with textures at different interface with respect to the PCE and energy yield. These simulations predict a slightly lower optimal bandgap of the perovskite top cell in a textured device as compared to a flat one and demonstrate strong interdependency between the bandgap and the texture position in the monolithic stack. We estimate the PCE potential for the best performing both side textured device to be 32.5 for a perovskite bandgap of 1.66 eV. Furthermore, the results show that under perpendicular illumination conditions, for optimized designs, the LM foil on top of the cell performs only slightly better than a flat anti reflective coating. However, under diffuse illumination, the benefits of the LM foil are much greater. Finally, we calculate the energy yield for the different device designs, based on true weather data for three different locations throughout the year, taking direct as well as diffuse illumination fully into account. The results further confirm the benefits of front side texture, even more for BIPV applications. Overall, devices built on a both side textured silicon wafer perform best. However, we show that devices with textured LM foils on the cell s front side are a highly efficient alternativ

    21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces

    Get PDF
    Perovskite-based tandem solar cells can increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices. Here, we present monolithic perovskite/CIGSe tandem solar cells with a perovskite top cell fabricated directly on an as-grown, rough CIGSe bottom cell. To prevent potential shunting due to the rough CIGSe surface, a thin NiOx layer is conformally deposited via atomic layer deposition on the front contact of the CIGSe bottom cell. The performance is further improved by an additional layer of the polymer PTAA at the NiOx/perovskite interface. This hole transport bilayer enables a 21.6% stabilized PCE of the tandem device at ∼0.8 cm2 active area. We use TEM/EDX measurements to investigate the deposition uniformity and conformality of the NiOx and PTAA layers. By absolute photoluminescence measurements, the contribution of the individual subcells to the tandem VOC is determined, revealing that further fine-tuning of the recombination layers might improve the tandem VOC. Finally, on the basis of the obtained results, we give guidelines to improve monolithic perovskite/CIGSe tandems toward predicted PCE estimates above 30%.BMBF, 03SF0540, Nachwuchsgruppe MeSa-Zuma: Entwicklung von spektral optimierten, hocheffizienten und langzeitstabilen Perowskit/Silizium Tandem SolarzellenBMWi, 0324095D, Verbundvorhaben: speedCIGS - Rechnerunterstützte Optimierung des CIGS-Depositionsprozesses in der industriellen Umsetzung; Teilvorhaben: Alkalibehandlung der CIGS Absorberoberfläche und monolithisch integrierte Tandem Zelle (p-TCM)BMWi, 0324076D, Verbundvorhaben: EFFCIS - Effizienzoptimierung von CIS-basierten Dünnschichtsolarzellen und -modulen; Teilvorhaben: Elektronenstrukturrechnungen zum Einfluss von Puffermaterialien auf die Eigenschaften des Cu(ln,Ga)(S,Se)2 Absorber
    corecore