346 research outputs found

    Elaboration of a computer system for determining the energy of laser pulse

    Get PDF
    This work investigates the neutron-induced fission of U-234 and the fission-fragment properties for neutron energies between E-n = 0.2 and 5.0 MeV with a special highlight on the prominent vibrational resonance at E-n = 0.77 MeV. Angular, energy, and mass distributions were determined based on the double-energy technique by means of a twin Frisch-grid ionization chamber. The experimental data are parametrized in terms of fission modes based on the multimodal random neck-rupture model. The main results are a verified strong angular anisotropy and fluctuations in the energy release as a function of incident-neutron energy

    Ion counting efficiencies at the IGISOL facility

    Full text link
    At the IGISOL-JYFLTRAP facility, fission mass yields can be studied at high precision. Fission fragments from a U target are passing through a Ni foil and entering a gas filled chamber. The collected fragments are guided through a mass separator to a Penning trap where their masses are identified. This simulation work focuses on how different fission fragment properties (mass, charge and energy) affect the stopping efficiency in the gas cell. In addition, different experimental parameters are varied (e. g. U and Ni thickness and He gas pressure) to study their impact on the stopping efficiency. The simulations were performed using the Geant4 package and the SRIM code. The main results suggest a small variation in the stopping efficiency as a function of mass, charge and kinetic energy. It is predicted that heavy fragments are stopped about 9% less efficiently than the light fragments. However it was found that the properties of the U, Ni and the He gas influences this behavior. Hence it could be possible to optimize the efficiency.Comment: 52 pages, 44 figure

    Sensitivity of measured fission yields on prompt-neutron corrections

    Full text link
    The amount of emitted prompt neutrons from the fission fragments increases as a function of excitation energy. Yet it is not fully understood whether the increase in \nu(A) as a function of E_{n} is mass dependent. The share of excitation energies among the fragments is still under debate, but there are reasons to believe that the excess in neutron emission originates only from the heavy fragments, leaving \nu_{light}(A) almost unchanged. In this work we investigated the consequences of a mass-dependent increase in \nu(A) on the final mass and energy distributions. The assumptions on \nu(A) are essential when analysing measurements based on the 2E-technique. This choice showed to be significant on the measured observables. For example, the post-neutron emission mass yield distribution revealed changes up to 10-30%. The outcome of this work pinpoint the urgent need to determine \nu(A) experimentally, and in particular, how \nu(A) changes as a function of incident-neutron energy. Until then, many fission yields in the data libraries could be largely affected, since they were analysed based on another assumption on the neutron emission.Comment: 4 pages, 3 figures, Proc. 2013 International Conference on Nuclear Data for Science & Technology (ND2013), March 4-8, 2013, New York, USA, to be published in Nuclear Data Sheet
    corecore