88 research outputs found

    Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different body postures

    Get PDF
    Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute (BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the five body postures namely standing, sitting at 90°, Flower’s position at 45°, supine, and right lateral recumbent. There was no significant difference in measured RR between IJP and reference sensors, between two trials, or between different body postures (all p \u3e 0.05). Body posture did not have any significant effect on the difference of RR measurements between IJP and the reference sensors (difference \u3c 0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure the RR at different body postures, which makes it a promising, simple, and user-friendly option for clinical and daily uses

    Sheath-less high throughput inertial separation of small microparticles in spiral microchannels with trapezoidal cross-section

    Get PDF
    Various mechanisms of different designs have emerged for the purpose of microparticle separation and cell sorting. The main goals behind such designs are to create high throughput and high purity sample isolation. In this study, high efficiency, high throughput and precise separation of microparticles under inertial lift and drag forces induced by trapezoidal curvilinear channels are reported. This work is the first to focus and recover 2 from 5 μm and 2 from 10 μm particles in spiral channels in a sheath-less flow device, which reduces the overall complexity of the system and allows for higher throughput. The new microfluidic chip design is fabricated in glass using femtosecond laser ablation. In addition, mathematical force calculations were conducted during the design phase of the microfluidic channels and compared with experiments. The results show a close prediction of the equilibrium position of the tested microparticles

    High-Efficiency Small Sample Microparticle Fractionation on a Femtosecond Laser-Machined Microfluidic Disc

    Get PDF
    The fabrication and testing of microfluidic spinning compact discs with embedded trapezoidal microchambers for the purpose of inertial microparticle focusing is reported in this article. Microparticle focusing channels require small features that cannot be easily fabricated in acrylic sheets and are complicated to realize in glass by traditional lithography techniques; therefore, the fabrication of microfluidic discs with femtosecond laser ablation is reported for the first time in this paper. It could be demonstrated that high-efficiency inertial focusing of 5 and 10 µm particles is achieved in a channel with trapezoidal microchambers regardless of the direction of disc rotation, which correlates to the dominance of inertial forces over Coriolis forces. To achieve the highest throughput possible, the suspension concentration was increased from 0.001% (w/v) to 0.005% (w/v). The focusing efficiency was 98.7% for the 10 µm particles and 93.75% for the 5 µm particles

    An In-Line photonic biosensor for monitoring of glucose concentrations

    Get PDF
    This paper presents two PDMS photonic biosensor designs that can be used for continuous monitoring of glucose concentrations. The first design, the internally immobilized sensor, consists of a reactor chamber, micro-lenses and self-alignment structures for fiber optics positioning. This sensor design allows optical detection of glucose concentrations under continuous glucose flow conditions of 33 μL/h based on internal co-immobilization of glucose oxidase (GOX) and horseradish peroxidase (HRP) on the internal PDMS surface of the reactor chamber. For this design, two co-immobilization methods, the simple adsorption and the covalent binding (PEG) methods were tested. Experiments showed successful results when using the covalent binding (PEG) method, where glucose concentrations up to 5 mM with a coefficient of determination (R2) of 0.99 and a limit of detection of 0.26 mM are detectable. The second design is a modified version of the internally immobilized sensor, where a microbead chamber and a beads filling channel are integrated into the sensor. This modification enabled external co-immobilization of enzymes covalently onto functionalized silica microbeads and allows binding a huge amount of HRP and GOX enzymes on the microbeads surfaces which increases the interaction area between immobilized enzymes and the analyte. This has a positive effect on the amount and rate of chemical reactions taking place inside the chamber. The sensor was tested under continuous glucose flow conditions and was found to be able to detect glucose concentrations up to 10 mM with R2 of 0.98 and a limit of detection of 0.7 mM. Such results are very promising for the application in photonic LOC systems used for online analysis © 2014 by the authors; licensee MDPI, Basel, Switzerland.This work has been funded by the German Research Foundation (DFG) within the framework of the Research Unit 856 Microsystems for Particulate Life-Science Products. One of the authors (S.B.) gratefully acknowledges the financial support of the Volkswagen Foundation. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)Peer Reviewe

    FEDSM-ICNMM2010-30971 NUMERICAL ANALYSIS OF MIXING IN A MULTIFUNCTION ELECTROMAGNETIC MICROPUMP

    Get PDF
    ABSTRACT This work presents numerical study on the feasibility of implementing a newly introduced electromagnetic pump for mixing fluids in microscales. It also introduces an interesting energization scheme that can be used to adjust the mixing length until obtaining complete mixing. The electromagnetic gentle pump was proposed for biomedical applications. It consists of an annular fluidic channel, set of solenoids, two permanent magnets and a cover. The pumping concept depends on controlling the rotation of the two hard magnets placed in an annular channel in opposing polarity under the influence of an electronically controlled moving electromagnetic field. This concept is currently under development for microfluidic applications using polymer micromachining. Results have been visualized through plotting mass fraction contours along the channel length. Results are motivating and showed higher mass fraction of H 2 O at low channel widths

    Optimization of Geometry Parameters of Inkjet-Printed Silver Nanoparticle Traces on PDMS Substrates Using Response Surface Methodology

    Get PDF
    Inkjet printing is an emerging technology with key advantages that make it suitable for the fabrication of stretchable circuits. Specifically, this process is cost-effective and less complex compared to conventional fabrication technologies. Inkjet printing has several process and geometry parameters that significantly affect the electromechanical properties of the printed circuits. This study aims to optimize the geometry parameters of inkjet-printed silver nanoparticle traces on plasma-treated polydimethylsiloxane (PDMS) substrates. The optimization process was conducted for two printed shapes, namely straight line and horseshoe patterns. The examined input factors for the straight line traces were: the number of inkjet-printed layers and line width. On the other hand, the number of cycles and amplitude were the examined input parameters for the horseshoe shape. First, the optimal number of layers and line width were found from the straight line analysis and subsequently were used in the optimization of the horseshoe pattern parameters. The optimization of the input parameters was carried out using the response surface methodology (RSM), where the objective of the optimization was to maximize the breakdown strain of the traces while maximizing the gauge factor and minimizing the ink cost. The results indicate that a 1.78 mm line width and one layer are the optimal geometry parameters for the straight line traces, while for the horseshoe pattern, the optimal parameters are one layer, a line width of 1.78 mm, amplitude of 4 mm and one cycle. The optimal straight line was designed to sustain up to 10% strain while the horseshoe pattern was designed to sustain up to 15% strain

    Spiral Microchannels with Trapezoidal Cross Section Fabricated by Femtosecond Laser Ablation in Glass for the Inertial Separation of Microparticles

    Get PDF
    The fabrication and testing of spiral microchannels with a trapezoidal cross section for the passive separation of microparticles is reported in this article. In contrast to previously reported fabrication methods, the fabrication of trapezoidal spiral channels in glass substrates using a femtosecond laser is reported for the first time in this paper. Femtosecond laser ablation has been proposed as an accurate and fast prototyping method with the ability to create 3D features such as slanted-base channels. Moreover, the fabrication in borosilicate glass substrates can provide high optical transparency, thermal resistance, dimensional stability, and chemical inertness. Post-processing steps of the laser engraved glass substrate are also detailed in this paper including hydrogen fluoride (HF) dipping, chemical cleaning, surface activation, and thermal bonding. Optical 3D images of the fabricated chips confirmed a good fabrication accuracy and acceptable surface roughness. To evaluate the particle separation function of the microfluidic chip, 5 μm, 10 μm, and 15 μm particles were focused and recovered from the two outlets of the spiral channel. In conclusion, the new chemically inert separation chip can be utilized in biological or chemical processes where different sizes of cells or particles must be separated, i.e., red blood cells, circulating tumor cells, and technical particle suspensions

    Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different measurements locations

    Get PDF
    The respiration rate (RR) is a vital sign in physiological measurement and clinical diagnosis. RR can be measured using stretchable and wearable strain gauge sensors which detect the respiratory movements in the abdomen or thorax areas caused by volumetric changes. In different body locations, the accuracy of RR detection might differ due to different respiratory movement amplitudes. Few studies have quantitatively investigated the effect of the measurement location on the accuracy of new sensors in RR detection. Using a stretchable and wearable inkjet-printed strain gauge (IPSG) sensor, RR was measured from five body locations (umbilicus, upper abdomen, xiphoid process, upper thorax, and diagonal) on 30 healthy test subjects while sitting on an armless chair. At each location, reference RR was simultaneously detected by the e-Health sensor, and the measurement was repeated twice. Subjects were asked about the comfortableness of locations. Based on Levene’s test, ANOVA was performed to investigate if there is a significant difference in RR between sensors, measurement locations, and two repeated measurements. Bland–Altman analysis was applied to the RR measurements at different locations. The effects of measurement site and measurement trials on RR difference between sensors were also investigated. There was no significant difference between IPSG and reference sensors, between any locations, and between the two measurements (all p > 0.05). As to the RR deviation between IPSG and reference sensors, there was no significant difference between any locations, or between two measurements (all p > 0.05). All the 30 subjects agreed that diagonal and upper thorax positions were the most uncomfortable and most comfortable locations for measurement, respectively. The IPSG sensor could accurately detect RR at five different locations with good repeatability. Upper thorax was the most comfortable location
    corecore