268 research outputs found
Asymptotic Freedom, Dimensional Transmutation, and an Infra-red Conformal Fixed Point for the -Function Potential in 1-dimensional Relativistic Quantum Mechanics
We consider the Schr\"odinger equation for a relativistic point particle in
an external 1-dimensional -function potential. Using dimensional
regularization, we investigate both bound and scattering states, and we obtain
results that are consistent with the abstract mathematical theory of
self-adjoint extensions of the pseudo-differential operator . Interestingly, this relatively simple system is asymptotically free. In
the massless limit, it undergoes dimensional transmutation and it possesses an
infra-red conformal fixed point. Thus it can be used to illustrate non-trivial
concepts of quantum field theory in the simpler framework of relativistic
quantum mechanics
Fate of Accidental Symmetries of the Relativistic Hydrogen Atom in a Spherical Cavity
The non-relativistic hydrogen atom enjoys an accidental symmetry,
that enlarges the rotational symmetry, by extending the angular
momentum algebra with the Runge-Lenz vector. In the relativistic hydrogen atom
the accidental symmetry is partially lifted. Due to the Johnson-Lippmann
operator, which commutes with the Dirac Hamiltonian, some degeneracy remains.
When the non-relativistic hydrogen atom is put in a spherical cavity of radius
with perfectly reflecting Robin boundary conditions, characterized by a
self-adjoint extension parameter , in general the accidental
symmetry is lifted. However, for (where is the Bohr
radius and is the orbital angular momentum) some degeneracy remains when
or . In the relativistic case, we
consider the most general spherically and parity invariant boundary condition,
which is characterized by a self-adjoint extension parameter. In this case, the
remnant accidental symmetry is always lifted in a finite volume. We also
investigate the accidental symmetry in the context of the Pauli equation, which
sheds light on the proper non-relativistic treatment including spin. In that
case, again some degeneracy remains for specific values of and .Comment: 27 pages, 7 figure
Majorana Fermions in a Box
Majorana fermion dynamics may arise at the edge of Kitaev wires or
superconductors. Alternatively, it can be engineered by using trapped ions or
ultracold atoms in an optical lattice as quantum simulators. This motivates the
theoretical study of Majorana fermions confined to a finite volume, whose
boundary conditions are characterized by self-adjoint extension parameters.
While the boundary conditions for Dirac fermions in -d are characterized
by a 1-parameter family, , of self-adjoint extensions,
for Majorana fermions is restricted to . Based on this result,
we compute the frequency spectrum of Majorana fermions confined to a 1-d
interval. The boundary conditions for Dirac fermions confined to a 3-d region
of space are characterized by a 4-parameter family of self-adjoint extensions,
which is reduced to two distinct 1-parameter families for Majorana fermions. We
also consider the problems related to the quantum mechanical interpretation of
the Majorana equation as a single-particle equation. Furthermore, the equation
is related to a relativistic Schr\"odinger equation that does not suffer from
these problems.Comment: 23 pages, 2 figure
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant
Multiple segmental and selective isotope labeling of large RNA for NMR structural studies
Multiple segmental and selective isotope labeling of RNA with three segments has been demonstrated by introducing an RNA segment, selectively labeled with 13C9/15N2/2H(1′, 3′, 4′, 5′, 5′′)-labeled uridine residues, into the central position of the 20 kDa ε-RNA of Duck Hepatitis B Virus. The RNA molecules were produced via two efficient protocols: a two-step protocol, which uses T4 DNA ligase and T4 RNA ligase 1, and a one-pot protocol, which uses T4 RNA ligase 1 alone. With T4 RNA ligase 1 all not-to-be-ligated termini are usually protected to prevent formation of side products. We show that such labor-intensive protection of termini is not required, provided segmentation sites can be chosen such that the segments fold into the target structure or target-like structures and thus are not trapped into stable alternate structures. These sites can be reliably predicted via DINAMelt. The simplified NMR spectrum provided evidence for the presence of a U28 H3-imino resonance, previously obscured in the fully labeled sample, and thus of the non-canonical base pair U28:C37. The demonstrated multiple segmental labeling protocols are generally applicable to large RNA molecules and can be extended to more than three segments
Visualizing spatially correlated dynamics that directs RNA conformational transitions
RNAs fold into three- dimensional ( 3D) structures that subsequently undergo large, functionally important, conformational transitions in response to a variety of cellular signals(1-3). RNA structures are believed to encode spatially tuned flexibility that can direct transitions along specific conformational pathways(4,5). However, this hypothesis has proved difficult to examine directly because atomic movements in complex biomolecules cannot be visualized in 3D by using current experimental methods. Here we report the successful implementation of a strategy using NMR that has allowed us to visualize, with complete 3D rotational sensitivity, the dynamics between two RNA helices that are linked by a functionally important trinucleotide bulge over timescales extending up to milliseconds. The key to our approach is to anchor NMR frames of reference onto each helix and thereby directly measure their dynamics, one relative to the other, using 'relativistic' sets of residual dipolar couplings ( RDCs)(6,7). Using this approach, we uncovered super- large amplitude helix motions that trace out a surprisingly structured and spatially correlated 3D dynamic trajectory. The two helices twist around their individual axes by approximately 536 and 1106 in a highly correlated manner ( R = 0.97) while simultaneously ( R = 0.81 - 0.92) bending by about 94 degrees. Remarkably, the 3D dynamic trajectory is dotted at various positions by seven distinct ligand- bound conformations of the RNA. Thus even partly unstructured RNAs can undergo structured dynamics that directs ligand- induced transitions along specific predefined conformational pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62506/1/nature06389.pd
Chiral Magnetic Effect on the Lattice
We review recent progress on the lattice simulations of the chiral magnetic
effect. There are two different approaches to analyze the chiral magnetic
effect on the lattice. In one approach, the charge density distribution or the
current fluctuation is measured under a topological background of the gluon
field. In the other approach, the topological effect is mimicked by the chiral
chemical potential, and the induced current is directly measured. Both
approaches are now developing toward the exact analysis of the chiral magnetic
effect.Comment: to appear in Lect. Notes Phys. "Strongly interacting matter in
magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Ye
Yield of soybean genotypes identified through GGE biplot and path analysis.
Genotype x environment (GxE) interaction is an important source of variation in soybean yield, which can significantly influence selection in breeding programs. This study aimed to select superior soybean genotypes for performance and yield stability, from data from multienvironment trials (METs), through GGE biplot analysis that combines the main effects of the genotype (G) plus the genotype-by-environment (G×E) interaction. As well as, through path analysis, determine the direct and indirect influences of yield components on soybean grain yield, as a genotype selection strategy
Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe In
Structure and dynamics are both critical to RNA’s vital functions in biology. Numerous techniques can elucidate the structural dynamics of RNA, but computational approaches based on experimental data arguably hold the promise of providing the most detail. In this Account, we highlight areas wherein molecular dynamics (MD) and quantum mechanical (QM) techniques are applied to RNA, particularly in relation to complementary experimental studies
- …