6 research outputs found

    Sphingolipid metabolism products: potential new players in the pathogenesis of bortezomib-induced neuropathic pain

    Get PDF
    Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the major dose-limiting adverse events of widely used drugs in both the oncologic and hematologic setting (1). Among its cardinal symptoms, neuropathic pain is frequently present (2). In particular, the incidence of bortezomib-induced peripheral neurotoxicity (BIPN) and neuropathic pain ranges from 14–45% and 5–39%, respectively, in myeloma multiple patients. BIPN is more frequently developed in pretreated patients, compared to those being chemotherapy-naïve (3,4), and this difference mostly accounts for the wide variability in the observed incidence rates. Bortezomib is the first proteasome inhibitor introduced in clinical practice. The mechanisms underlying the pathogenesis of peripheral neurotoxicity in bortezomib- treated patients are, yet, not fully elucidated (3,4)

    Differential effects on KCC2 expression and spasticity of ALS and traumatic injuries to motoneurons

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease manifested by progressive muscle atrophy and paralysis due to the loss of upper and lower motoneurons (MN). Spasticity appears in ALS patients leading to further disabling consequences. Loss of the inhibitory tone induced by downregulation of the potassium chloride cotransporter 2 (KCC2) in MN has been proposed to importantly contribute to the spastic behavior after spinal cord injury (SCI). The aim of the present study was to test whether the alterations in the expression of KCC2 are linked to the appearance of spasticity in the SOD(G93A) ALS murine model. We compared SOD(G93A) mice to wild type mice subjected to SCI to mimic the spinal MN disconnection from motor descending pathways, and to sciatic nerve lesion to mimic the loss of MN connectivity to muscle. Electrophysiological results show that loss of motor function is observed at presymptomatic stage (8 weeks) in SOD(G93A) mice but hyperreflexia and spasticity do not appear until a late stage (16 weeks). However, KCC2 was not downregulated despite MN suffered disconnection both from muscles and upper MNs. Further experiments revealed decreased gephyrin expression, as a general marker of inhibitory systems, accompanied by a reduction in the number of Renshaw interneurons. Moreover, 5-HT fibers were increased in the ventral horn of the lumbar spinal cord at late stage of disease progression in SOD1(G93A) mice. Taken together, the present results indicate that spasticity appears late in the ALS model, and may be mediated by a decrease in inhibitory interneurons and an increase of 5-HT transmission, while the absence of down-regulation of KCC2 could rather indicate an inability of MNs to respond to insult

    Treatment with anti-TNF alpha protects against the neuropathy induced by the proteasome inhibitor bortezomib in a mouse model

    Get PDF
    Bortezomib (BTZ), a proteasome inhibitor, is an effective anti-neoplastic drug used in the treatment of multiple myeloma and mantle cell lymphoma. However, it can induce a reversible peripheral neuropathy that may lead to treatment discontinuation. The mechanism through which BTZ exerts toxic effects in peripheral neurons is not clear. Release of proinflammatory cytokines after nerve damage can induce neurodegeneration, but the effects of BTZ on cytokine expression in neurons are unknown, although BTZ modulates the expression of cytokines, such as TNF-α and IL-6, in tumor cells. The aim of this study was to evaluate the expression and the role of these cytokines on the course of BTZ induced neuropathy in mice. IL-6, TNF-α, TGF-ÎČ1 and IL-1ÎČ were up-regulated in dorsal root ganglia but TNF-α and IL-6 increased faster and higher. Then, we studied the potential neuroprotective effect of selective antibodies anti-TNF-α and anti-IL-6 on the evolution of the neuropathy. Treatment with anti-TNF-α but not with anti-IL-6 significantly prevented the decrease of sensory nerve action potentials amplitude and the loss of myelinated and unmyelinated fibers. We conclude that monoclonal antibodies directed against TNF-α may be a suitable neuroprotective therapy against the neurotoxicity induced by BTZ. © 2013 Elsevier Inc

    Inhibition of the neuronal NFÎșB pathway attenuates bortezomib-induced neuropathy in a mouse model

    Get PDF
    © 2016 Elsevier B.V. Bortezomib is a proteasome inhibitor with a remarkable antitumor activity, used in the clinic as first line treatment for multiple myeloma. One hallmark of bortezomib mechanism of action in neoplastic cells is the inhibition of nuclear factor kappa B (NFÎșB), a transcription factor involved in cell survival and proliferation. Bortezomib-induced peripheral neuropathy is a dose-limiting toxicity that often requires adjustment of treatment and affects patient's prognosis and quality of life. Since disruption of NFÎșB pathway can also affect neuronal survival, we assessed the role of NFÎșB in bortezomib-induced neuropathy by using a transgenic mouse that selectively provides blockage of the NFÎșB pathway in neurons. Interestingly, we observed that animals with impaired NFÎșB activation developed significantly less severe neuropathy than wild type animals, with particular preservation of large myelinated fibers, thus suggesting that neuronal NFÎșB activation plays a positive role in bortezomib induced neuropathy and that bortezomib treatment might induce neuropathy by inhibiting NFÎșΒ in non-neuronal cell types or by targeting other signaling pathways. Therefore, inhibition of NFÎșB might be a promising strategy for the cotreatment of cancer and neuropathy

    Differential effects on KCC2 expression and spasticity of ALS and traumatic injuries to motoneurons

    No full text
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease manifested by progressive muscle atrophy and paralysis due to the loss of upper and lower motoneurons (MN). Spasticity appears in ALS patients leading to further disabling consequences. Loss of the inhibitory tone induced by downregulation of the potassium chloride cotransporter 2 (KCC2) in MN has been proposed to importantly contribute to the spastic behavior after spinal cord injury (SCI). The aim of the present study was to test whether the alterations in the expression of KCC2 are linked to the appearance of spasticity in the SOD(G93A) ALS murine model. We compared SOD(G93A) mice to wild type mice subjected to SCI to mimic the spinal MN disconnection from motor descending pathways, and to sciatic nerve lesion to mimic the loss of MN connectivity to muscle. Electrophysiological results show that loss of motor function is observed at presymptomatic stage (8 weeks) in SOD(G93A) mice but hyperreflexia and spasticity do not appear until a late stage (16 weeks). However, KCC2 was not downregulated despite MN suffered disconnection both from muscles and upper MNs. Further experiments revealed decreased gephyrin expression, as a general marker of inhibitory systems, accompanied by a reduction in the number of Renshaw interneurons. Moreover, 5-HT fibers were increased in the ventral horn of the lumbar spinal cord at late stage of disease progression in SOD1(G93A) mice. Taken together, the present results indicate that spasticity appears late in the ALS model, and may be mediated by a decrease in inhibitory interneurons and an increase of 5-HT transmission, while the absence of down-regulation of KCC2 could rather indicate an inability of MNs to respond to insults
    corecore