261 research outputs found

    Large upper critical field in non-centrosymmetric superconductor Y2C3

    Full text link
    We determine the upper critical field μ0Hc2(Tc)\mu_0 H_{c2}(T_c) of non-centrosymmetric superconductor Y2C3Y_2 C_3 using two distinct methods: the bulk magnetization M(T) and the tunnel-diode oscillator (TDO) based impedance measurements. It is found that the upper critical field reaches a value of 30T at zero temperature which is above the weak-coupling Pauli paramagnetic limit. We argue that the observation of such a large μ0Hc2(0)\mu_0 H_{c2}(0) in Y2C3Y_2 C_3 could be attributed to the admixture of spin-singlet and spin-triplet pairing states as a result of broken inversion symmetry.Comment: 4 pages, 3 figures, accepted by J. Phys. Chem. Solid

    Multigap Superconductivity in Y2_2C3_3: A 13^{13}C-NMR Study

    Full text link
    We report on the superconducting (SC) properties of Y2_2C3_3 with a relatively high transition temperature Tc=15.7T_{\rm c}=15.7 K investigated by 13^{13}C nuclear-magnetic-resonance (NMR) measurements under a magnetic field. The 13^{13}C Knight shift has revealed a significant decrease below TcT_{\rm c}, suggesting a spin-singlet superconductivity. From an analysis of the temperature dependence of the nuclear spin-lattice relaxation rate 1/T11/T_1 in the SC state, Y2_2C3_3 is demonstrated to be a multigap superconductor that exhibits a large gap 2Δ/kBTc=52\Delta/k_{\rm B}T_{\rm c}=5 at the main band and a small gap 2Δ/kBTc=22\Delta/k_{\rm B}T_{\rm c}=2 at other bands. These results have revealed that Y2_2C3_3 is a unique multigap s-wave superconductor similar to MgB2_2.Comment: 4 pages, 5 figure

    Exotic heavy-fermion superconductivity in atomically thin CeCoIn5 films

    Get PDF
    Funding: This work is supported by Grants-in-Aid for Scientific Research (KAKENHI) (Grants No. JP18H01180, No. JP18H05227, and No. JP18K03511) from Japan Society for the Promotion of Science (JSPS), and by Core Research for Evolutional Science and Technology (CREST) (Grant No. JP-MJCR19T5) from Japan Science and Technology Agency (JST).We report an in situ scanning tunneling microscopy study of atomically thin films of CeCoIn5, a d-wave heavy-fermion superconductor. Both hybridization and superconducting gaps are observed even in monolayer CeCoIn5, providing direct evidence of superconductivity of heavy quasiparticles mediated by purely two-dimensional bosonic excitations. In these atomically thin films, Tc is suppressed to nearly half of the bulk, but is similar to CeCoIn5/YbCoIn5 superlattices containing CeCoIn5 layers with the same thickness as the thin films. Remarkably, the out-of-plane upper critical field μ0Hc2⊥ at zero temperature is largely enhanced from those of bulk and superlattices. The enhanced Hc2⊥ well exceeds the Pauli and bulk orbital limits, suggesting the possible emergence of unusual superconductivity with parity mixing caused by the inversion symmetry breaking.Publisher PDFPeer reviewe

    Evidence of nodal gap structure in the non-centrosymmetric superconductor Y2C3

    Full text link
    The magnetic penetration depth λ(T)\lambda (T) and the upper critical field μ0Hc2(Tc)% \mu_{0}H_{c2}(T_{c}) of the non-centrosymmetric (NCS) superconductor Y2_{2} C3_{3} have been measured using a tunnel-diode (TDO) based resonant oscillation technique. We found that the penetration depth λ(T)\lambda (T) and its corresponding superfluid density ρs(T)\rho_{s}(T) show linear temperature dependence at very low temperatures (TTcT\ll T_{c}), indicating the existence of line nodes in the superconducting energy gap. Moreover, the upper critical field μ0Hc2(Tc)\mu_{0}H_{c2}(T_{c}) presents an upturn at low temperatures with a rather high value of μ0Hc2(0)\mu_{0}H_{c2}(0) 29\simeq 29T, which slightly exceeds the weak-coupling Pauli limit. We discuss the possible origins for these nontrivial superconducting properties, and argue that the nodal gap structure in Y2_{2}C3_{3} is likely attributed to the absence of inversion symmetry, which allows the admixture of spin-singlet and spin-triplet pairing states.Comment: 5 pages, 3 figure

    Status of 48Ca double beta decay search and its future prospect in CANDLES

    Get PDF
    CANDLES(CAlcium fluoride for the study of Neutrinos and Dark matters by Low Energy Spectrometer) is the experiment to search for the neutrino-less double beta decay(0vββ) of 48Ca with CaF2 scintillator. 48Ca has the highest Qββ-value (4.3 MeV) among all isotope candidates for 0vββ. It enables us to measure signals with very low background condition. After rejection analysis with 131 days × 86 kg data for background events from radioactive contaminations in the CaF2 scintillators, no events are observed in the Qββ-value region. As a result, the 0vββ half-life of 48Ca is greater than 6.2 × 1022 yr (90% confidence level). For further high sensitive measurement of 48Ca 0vββ search, we have been developing the 48Ca enrichment and CaF2 scintillating bolometer techniques. In this paper, the latest result for CANDLES and the status of scintillating bolometer development are described

    Multiband Superconductivity in Heavy Fermion Compound CePt3Si without Inversion Symmetry: An NMR Study on a High-Quality Single Crystal

    Full text link
    We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt3Si without inversion symmetry through 195Pt-NMR study on a single crystal with T_c= 0.46 K that is lower than T_c= 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt3Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T_c= 0.46 K. The mystery about the sample dependence of T_c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T_N= 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt3Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt3Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T_1 just below T_c reported in the previous paper (Yogi et al, 2004) is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state.Comment: 10 pages, 9 figures, Accepted for publication in J. Phys. Soc. Jpn., vol.78, No.1 (2009

    Coxiella burnetii, the Agent of Q Fever, Replicates within Trophoblasts and Induces a Unique Transcriptional Response

    Get PDF
    Q fever is a zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium typically found in myeloid cells. The infection is a source of severe obstetrical complications in humans and cattle and can undergo chronic evolution in a minority of pregnant women. Because C. burnetii is found in the placentas of aborted fetuses, we investigated the possibility that it could infect trophoblasts. Here, we show that C. burnetii infected and replicated in BeWo trophoblasts within phagolysosomes. Using pangenomic microarrays, we found that C. burnetii induced a specific transcriptomic program. This program was associated with the modulation of inflammatory responses that were shared with inflammatory agonists, such as TNF, and more specific responses involving genes related to pregnancy development, including EGR-1 and NDGR1. In addition, C. burnetii stimulated gene networks organized around the IL-6 and IL-13 pathways, which both modulate STAT3. Taken together, these results revealed that trophoblasts represent a protective niche for C. burnetii. The activation program induced by C. burnetii in trophoblasts may allow bacterial replication but seems unable to interfere with the development of normal pregnancy. Such pathophysiologocal processes should require the activation of immune placental cells associated with trophoblasts
    corecore