156 research outputs found

    Energy reduction in 3D NoCs through communication optimization

    Get PDF
    Cataloged from PDF version of article.Network-on-Chip (NoC) architectures and three-dimensional (3D) integrated circuits have been introduced as attractive options for overcoming the barriers in interconnect scaling while increasing the number of cores. Combining these two approaches is expected to yield better performance and higher scalability. This paper explores the possibility of combining these two techniques in a heterogeneity aware fashion. Specifically, on a heterogeneous 3D NoC architecture, we explore how different types of processors can be optimally placed to minimize data access costs. Moreover, we select the optimal set of links with optimal voltage levels. The experimental results indicate significant savings in energy consumption across a wide range of values of our major simulation parameters

    Application-Specific Heterogeneous Network-on-Chip Design

    Get PDF
    Cataloged from PDF version of article.As a result of increasing communication demands, application-specific and scalable Network-on-Chips (NoCs) have emerged to connect processing cores and subsystems in Multiprocessor System-on-Chips. A challenge in application-specific NoC design is to find the right balance among different tradeoffs, such as communication latency, power consumption and chip area. We propose a novel approach that generates latency-aware heterogeneous NoC topology. Experimental results show that our approach improves the total communication latency up to 27% with modest power consumption. © 2013 The Author 2013. Published by Oxford University Press on behalf of The British Computer Society

    Propagation of diffraction-free and accelerating laser beams in turbid media

    Get PDF
    We experimentally investigate propagation of laser beams with Gaussian, Bessel and Airy transverse profiles in turbid media. We evaluate and compare the self-healing properties of these beams

    Reliability-aware heterogeneous 3D chip multiprocessor design

    Get PDF
    Ability to stack separate chips in a single package enables three-dimensional integrated circuits (3D ICs). Heterogeneous 3D ICs provide even better opportunities to reduce the power and increase the performance per unit area. An important issue in designing a heterogeneous 3D IC is reliability. To achieve this, one needs to select the data mapping and processor layout carefully. This paper addresses this problem using an integer linear programming (ILP) approach. Specifically, on a heterogeneous 3D CMP, it explores how applications can be mapped onto 3D ICs to maximize reliability. Preliminary experiments indicate that the proposed technique generates promising results in both reliability and performance. © 2013 Springer Science+Business Media New York

    Adaptive compute-phase prediction and thread prioritization to mitigate memory access latency

    Get PDF
    The full potential of chip multiprocessors remains unex- ploited due to the thread oblivious memory access sched- ulers used in off-chip main memory controllers. This is especially pronounced in embedded systems due to limita- Tions in memory. We propose an adaptive compute-phase prediction and thread prioritization algorithm for memory access scheduling for embedded chip multiprocessors. The proposed algorithm eficiently categorize threads based on execution characteristics and provides fine-grained priori- Tization that allows to differentiate threads and prioritize their memory access requests accordingly. The threads in compute phase are prioritized among the threads in mem- ory phase. Furthermore, the threads in compute phase are prioritized among themselves based on the potential of mak- ing more progress in their execution. Compared to the prior works First-Ready First-Come First-Serve (FR-FCFS) and Compute-phase Prediction with Writeback-Refresh Overlap (CP-WO), the proposed algorithm reduces the execution time of the generated workloads up to 23.6% and 12.9%, respectively. Copyright 2014 ACM

    ILP-based communication reduction for heterogeneous 3D network-on-chips

    Get PDF
    Network-on-Chip (NoC) architectures and three-dimensional integrated circuits (3D ICs) have been introduced as attractive options for overcoming the barriers in interconnect scaling while increasing the number of cores. Combining these two approaches is expected to yield better performance and higher scalability. This paper explores the possibility of combining these two techniques in a heterogeneity aware fashion. We explore how heterogeneous processors can be mapped onto the given 3D chip area to minimize the data access costs. Our initial results indicate that the proposed approach generates promising results within tolerable solution times. © 2013 IEEE

    Effective kernel mapping for OpenCL applications in heterogeneous platforms

    Get PDF
    Many core accelerators are being deployed in many systems to improve the processing capabilities. In such systems, application mapping need to be enhanced to maximize the utilization of the underlying architecture. Especially in GPUs mapping becomes critical for multi-kernel applications as kernels may exhibit different characteristics. While some of the kernels run faster on GPU, others may refer to stay in CPU due to the high data transfer overhead. Thus, heterogeneous execution may yield to improved performance compared to executing the application only on CPU or only on GPU. In this paper, we propose a novel profiling-based kernel mapping algorithm to assign each kernel of an application to the proper device to improve the overall performance of an application. We use profiling information of kernels on different devices and generate a map that identifies which kernel should run on where to improve the overall performance of an application. Initial experiments show that our approach can effectively map kernels on CPU and GPU, and outperforms to a CPU-only and GPU-only approach. © 2012 IEEE

    Energy reduction in 3D NoCs through communication optimization

    Get PDF
    Network-on-Chip (NoC) architectures and three-dimensional (3D) integrated circuits have been introduced as attractive options for overcoming the barriers in interconnect scaling while increasing the number of cores. Combining these two approaches is expected to yield better performance and higher scalability. This paper explores the possibility of combining these two techniques in a heterogeneity aware fashion. Specifically, on a heterogeneous 3D NoC architecture, we explore how different types of processors can be optimally placed to minimize data access costs. Moreover, we select the optimal set of links with optimal voltage levels. The experimental results indicate significant savings in energy consumption across a wide range of values of our major simulation parameters. © 2013, Springer-Verlag Wien

    Application-specific heterogeneous network-on-chip design

    Get PDF
    As a result of increasing communication demands, application-specific and scalable Network-on-Chips (NoCs) have emerged to connect processing cores and subsystems in Multiprocessor System-on-Chips. A challenge in application-specific NoC design is to find the right balance among different tradeoffs, such as communication latency, power consumption and chip area. We propose a novel approach that generates latency-aware heterogeneous NoC topology. Experimental results show that our approach improves the total communication latency up to 27% with modest power consumption. © 2013 The Author 2013. Published by Oxford University Press on behalf of The British Computer Society

    PetaShare: A reliable, efficient and transparent distributed storage management system

    Get PDF
    Modern collaborative science has placed increasing burden on data management infrastructure to handle the increasingly large data archives generated. Beside functionality, reliability and availability are also key factors in delivering a data management system that can efficiently and effectively meet the challenges posed and compounded by the unbounded increase in the size of data generated by scientific applications. We have developed a reliable and efficient distributed data storage system, PetaShare, which spans multiple institutions across the state of Louisiana. At the back-end, PetaShare provides a unified name space and efficient data movement across geographically distributed storage sites. At the front-end, it provides light-weight clients the enable easy, transparent and scalable access. In PetaShare, we have designed and implemented an asynchronously replicated multi-master metadata system for enhanced reliability and availability, and an advanced buffering system for improved data transfer performance. In this paper, we present the details of our design and implementation, show performance results, and describe our experience in developing a reliable and efficient distributed data management system for data-intensive science. © 2011 - IOS Press and the authors. All rights reserved
    corecore