
Effective Kernel Mapping for OpenCL Applications in Heterogeneous Platforms

Omer Erdil Albayrak, Ismail Akturk, Ozcan Ozturk

Computer Engineering Department
Bilkent University

Ankara, Turkey
{oalbayrak, iakturk, ozturk}@cs.bilkent.edu.tr

Abstract—Manycore accelerators are being deployed in
many systems to improve the processing capabilities. In such
systems, application mapping need to be enhanced to maximize
the utilization of the underlying architecture. Especially in
GPUs mapping becomes critical for multi-kernel applications
as kernels may exhibit different characteristics. While some of
the kernels run faster on GPU, others may refer to stay in CPU
due to the high data transfer overhead. Thus, heterogeneous
execution may yield to improved performance compared to
executing the application only on CPU or only on GPU. In
this paper, we propose a novel profiling-based kernel mapping
algorithm to assign each kernel of an application to the proper
device to improve the overall performance of an application.
We use profiling information of kernels on different devices
and generate a map that identifies which kernel should run on
where to improve the overall performance of an application.
Initial experiments show that our approach can effectively map
kernels on CPU and GPU, and outperforms to a CPU-only and
GPU-only approach.

Keywords-Heterogeneous, OpenCL, kernel, mapping, GPU

I. INTRODUCTION

Today’s high performance and parallel computing systems

consist of different types of accelerators such as ASICs [1]

(Application Specific Integrated Circuits), FPGAs [2] (Field

Programmable Gate Arrays), GPUs [3] (Graphics Processing

Unit), APUs [4] (Accelerated Processor Unit). In addition

to the variety in accelerators in these systems, applications

that are running on these systems have also different pro-

cessing, memory, communication, and storage needs. Even

a single application may exhibit different processing, mem-

ory, communication, and storage requirements throughout

its execution. Thus, leveraging the provided computational

power and tailoring the usage of the resources based on

the applications’ execution characteristics have an immense

importance to maximize both application performance and

resource utilization.

Applications running on heterogeneous platforms are

usually composed of multiple exclusive regions known as

kernels. Efficient mapping of these kernels onto the available

computing resources is challenging due to the variation

in characteristics and requirements of these kernels. For

example each kernel has a different execution time and

memory performance on different platforms. It is our goal

to generate a kernel mapping that takes these characteristics

of each kernel and dependencies into account and leads to

improved performance.

In this paper, we propose a novel profiling-based kernel

mapping algorithm for multi-kernel applications running on

heterogeneous platforms. Our specific contributions are:

• an off-line profiling analysis to extract kernel character-

istics of applications.

• a greedy algorithm to select the most suitable device for

certain kernel considering its both execution time and data

dependencies.

• an improved version of the algorithm to avoid getting

stuck in local minima.

The initial results revealed that our approach increases

the performance of an application compared to a CPU-only

and GPU-only approach. Although our initial experiments

are limited to a single type of CPU and GPU, it is possible

to extend this framework to support multiple CPUs, GPUs,

and other types of accelerators.

The remainder of this paper is organized as follows. The

related work on GPUs and kernel execution is given in

Section II. Problem definition and introduction the proposed

approach are given in Section III. The details of the algo-

rithm and the implementation are given in Section IV. The

experimental evaluation is presented in Section V. Finally,

the paper is concluded in Section VI.

II. RELATED WORK

OpenCL is an open standard for parallel programming, es-

pecially targeting heterogeneous systems [5]. It was initially

started as an open alternative to Brook [6], IBM CELL [7],

AMD Stream [8], and CUDA [9]. It provides a standard

API that can be used on many different architectures regard-

less of architecture specific characteristics. Therefore it has

become widely accepted and supported by major vendors.

In this work we also use OpenCL version of the NAS

benchmarks [10].

Recent advancement in chip manufacturing technology

makes it feasible to produce power efficient and highly par-

allel processors and accelerators. This, in turn, increases the

heterogeneity of the computing platforms and increases the

options of where to execute provided applications. To do the

best of our knowledge, there are a few studies targeting this

critical problem. Especially, Luk et al. proposed Qilin [11]

2012 41st International Conference on Parallel Processing Workshops

1530-2016/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPPW.2012.14

81

which uses a statistical approach to predict the kernel

execution times offline. Based on the predicted execution

times, they generate a mapping and perform the execution.

Also, rather than individual kernel mapping, they partition

SIMD operations into sub-operations and map these sub-

operations to the devices. In contrast to Qilin, we aim to map

the kernels as a whole rather than the sub-operations of the

kernels. Also, their statistical regression model is orthogonal

to our profiling method. We obtain CPU and GPU execution

times in addition to the data transfer times through profiling.

It is possible to integrate such model into our system

in case profiling is not possible or costly. Furthermore,

Grewe and O’Boyle [12] proposed a machine learning-based

task mapping. They use a predictor to partition tasks on

heterogeneous systems. Their predictor predicts the target

device for each task according to the extracted code features

that are used in training set of machine learning algorithm.

Our decision method can be enhanced with such machine

learning-based techniques in the future.

The main difference between the prior works targeting

heterogeneous systems and ours is that the latter is a

profiling-based kernel mapping algorithm.

III. PROBLEM DEFINITION

A major challenge in a heterogeneous system is the

utilization of existing computing devices while obtaining the

uttermost performance of an application. This is mainly due

to the nature of such systems as they provide computing

devices with different characteristics and capabilities. There-

fore, the main goal of this work is to utilize these devices by

capturing specific characteristics of tasks and making task

assignment decisions accordingly.

For this paper, we use a simple heterogeneous system

with only a single type of CPU and GPU. However, in

reality, a heterogeneous system may consist of multiple types

of CPUs, GPUs and APUs from different vendors with

different features [13], [14], [15]. It is possible to have both

NVIDIA GPU and AMD GPU in the same system. While

NVIDIA GPUs are good for simple parallel multi-threaded

computations, AMD GPUs support vector operations [16],

[17]. Thus, characteristics of a task such as number of vector

operations and number of threads running parallel become

crucial in the decision of where to run the given application.

The size of data being required by an application is an

important issue, since some of the devices may have limited

memory space such as GPUs. Therefore, even though an

application is developed targeting GPU in mind, it may not

be possible to execute it on a certain GPU since data may

not fit in the memory of the given GPU.

In addition to the kernel characteristics and device specifi-

cations, dependencies between kernels are another concern.

Running dependent kernels in two different devices requires

data movement. Hence, it is necessary to consider data trans-

fer costs while assessing the performance of an application.

In this paper, we consider both kernel execution times and

data transfer overheads obtained through profiling, thereby

we map kernels onto devices according to the data depen-

dency requirements. As an alternative, we can extract the

kernel characteristics through compiler analysis and employ

machine learning-based technique, similar to [12], to predict

the kernel execution times and data transfer overheads. This

is left as a future work.

IV. MAPPING ALGORITHM

We first analyze each application through executing appli-

cations on different devices individually. Specifically, we use

CPU and GPU to collect necessary information including

input data transfer time, execution time, and output data

transfer time. These statistics are collected for each kernel on

all devices (i.e. CPU and GPU). We use a greedy algorithm

to generate a mapping that minimizes the execution cost

of each kernel. However, we realized that minimizing the

execution cost of each kernel may not minimize the overall

performance of an application due to the complex data

dependencies among kernels. In other words, we may get

stuck in a local minimum, so we enhanced our algorithm to

avoid this problem.

In the base algorithm, we try to minimize the execution

time of each kernel by selecting the device that runs the

given kernel faster. Eventually, we aim to generate a map-

ping that improves the performance compared to CPU-only

or GPU-only mapping. We can formulate how we obtain the

CPU and GPU execution times as follows:

CPUcostk = CPUrunningtimek +
n∑

d=1

DeviceToHost× InDeviced ×

Requiredk,d × sized. (1)

GPUcostk = GPUrunningtimek +
n∑

d=1

HostToDevice× (1− InDeviced)×

Requiredk,d × sized. (2)

In the above equations, the first part (in each equation)

is indicating the execution time while the second part is the

data transfer cost. HostToDevice and DeviceToHost functions

are simply the data transfer costs from device to host and

vice versa. Note that, Requiredk,d is either 1 or 0 that

indicates whether kernel k requires data d. Data might

already be present on target device and may not be required

to be moved in. For this purposed InDeviced is used and it

indicates whether data d is already being in the target device.

Similarly, we express the size of data d using sized.

Aforementioned constants are all extracted through profil-

ing and source code analysis except InDeviced. InDeviced
depends on the previous iteration of the algorithm that

82

Algorithm 1 Base algorithm

procedure BASEALGORITHM

total cost = 0
for all Kernel k do

cpu cost = k.CPU TIME + D2H(k)

gpu cost = k.GPU TIME + H2D(k)

if cpu cost < gpucost then
k.onCpu← true
k.cost← cpucost
for all Buffer b ∈ k do

b.onCpu← true
end for

else
k.onCpu← false
k.cost← gpucost
for all Buffer b ∈ k do

b.onCpu← false
end for

end if
total cost+ = k.cost

end forreturn total cost
end procedure

procedure H2D(Kernel k)

cost = 0
for all Buffer b ∈ k do

if b.onCPU == true then
cost+ = b.D2H transfer cost

end if
end for

end procedure

procedure D2H(Kernel k)

cost = 0
for all Buffer b ∈ k do

if b.onCPU == false then
cost+ = b.H2D transfer cost

end if
end for

end procedure

accessed the data d. If data was left in the device after this

last access, InDeviced will be 1, otherwise it will be 0. The

algorithm assumes all of the data is initially stored in the

CPU. Algorithm 1 gives the pseudo code for it.

For each kernel, we compare the respective costs as-

sociated with each candidate target and select the lowest

one. This greedy algorithm works fine with most of the

tested benchmarks. However, in some cases there is threat

of getting stuck in local minima due to the complex data

dependencies among kernels that can not be considered in

the base algorithm. We introduced the improved algorithm

Algorithm 2 Improved algorithm

procedure IMPROVEDALGORITHM

total cost = 0
for all Kernel k do

cpu cost = k.CPU TIME + D2H(k)

gpu cost = k.GPU TIME + H2D(k)

k clone← k.clone()
k clone.onCPU ← true � set k clone

as if CPU is selected and run BaseAlgorithm to observe

the results of CPU selection

for all Buffer b ∈ k clone do
b.onCPU ← true

end for
whatif cpu cost← BaseAlgorithm(k) � run

base algorithm starting from k clone

k clone← k.clone()
k clone.onCPU ← false
for all Buffer b ∈ k clone do

b.onCPU ← false
end for
whatif gpu cost← BaseAlgorithm(k)

if (cpu cost + whatif cpu cost) < (gpucost +
whatif gpu cost) then

k.onCPU ← true
k.cost← cpucost
for all Buffer b ∈ k do

b.onCPU ← true
end for

else
k.onCPU ← false
k.cost← gpucost
for all Buffer b ∈ k do

b.onCPU ← false
end for

end if
total cost+ = k.cost

end forreturn total cost
end procedure

(see Algorithm 2) to avoid getting stuck in such local

minima. Notice that it has ability to accept worse decisions

at Critical Points. Table I gives a simple example to show

the effect of using the improved algorithm.

When Algorithm 1 is considered for the example given

in Table I; the total cost of running the first kernel on CPU

is calculated as the summation of execution time on CPU

and data movement cost if data is not currently on CPU.

Since data is currently on CPU, the total cost of running

the first kernel on CPU is 5 + 0 = 5. Similarly, the total

cost of running the first kernel on GPU is calculated as the

summation of execution time on GPU and data movement

cost if data is not currently on GPU. Since data is initially

83

Kernel CPU GPU Data CPU to GPU GPU to CPU

Number Execution Execution Being Transfer Transfer

Latency Latency Used Time Time

1 5 4 A 2 2
2 3 2 A 2 2
3 7 6 A 2 0

Table I
A SIMPLE EXAMPLE TO SHOW THE DIFFERENCE BETWEEN BASE AND IMPROVED ALGORITHMS.

CPU GPU

Architecture AMD Phenom II X6 1055T NVIDIA GeForce GTX 460
Clock 2.8 Ghz 1430Mhz
#Cores 6 336 Cuda Cores

Memory Size 4 GB 1GB
OpenCL AMD APP SDK v2.6 NVIDIA OpenCL SDK 4.0

OS Ubuntu 10.04 64-bit

Table II
OUR SIMULATION SETUP AND HARDWARE COMPONENTS.

on CPU, the total cost of running the first kernel on GPU is

4 + 2 = 6. Since the total cost of executing the first kernel

on CPU is lower, the base algorithm would choose CPU

in mapping. Likewise, the second kernel will be mapped to

CPU because the total costs are 3 and 4 for CPU and GPU,

respectively. Similarly, the third kernel will be mapped to

CPU as well because the total costs are 7 and 8 for CPU and

GPU, respectively. This will result the total execution time

of being 5 + 3 + 7 = 15. However, if the first kernel would

run on GPU, although the cost is higher than CPU, it would

let the second and third kernel to run on GPU also. Since

data being used by the first kernel (i.e. A) is also used by the

second and third kernels the total cost would become (4 + 2)

+ 2 + 6 = 14 that is lower than the CPU-only mapping. For

this example, the main problem of the base algorithm was

that it gets stuck in local minima at the first kernel. However,

improved algorithm allowed to perform the data transfer that

increased the cost initially and it caused other kernels to run

on also GPU, having lower total execution time compared

to the mapping generated by the base algorithm.

As indicated before, we aim to avoid getting stuck in

local minima through Algorithm 2. This approach essentially

compares the two possible options: (i) it assumes CPU

is a better option and performs the remaining decisions

according to Algorithm 1, and (ii) it assumes GPU is a better

option and performs the remaining decisions according to

Algorithm 1. Among the results of (i) and (ii), the best one

is selected and that kernel is permanently assigned to that

device. This algorithm is applied to every single kernel. In

addition, for each kernel algorithm 2 applies algorithm 1 to

all the remaining kernels. Therefore, for kernel i algorithm 2

calls algorithm 1, and algorithm 1 runs a loop of (n − i).
For kernel (i + 1) algorithm 1 runs a loop of (n − i − 1),

and so on. For all the kernels, in total
(n−1)∗n

2 executions

are performed, therefore our Improved Algorithm has a

complexity of O(n2).

V. EXPERIMENTAL RESULTS

A. Setup

The profiling of each benchmark was carried on a het-

erogeneous system consists of a six-core AMD CPU and an

NVIDIA GeForce GTX 460 GPU. Table II shows the details

about our system.

We have tested our algorithm on OpenCL versions of

NAS parallel benchmarks [19]. which are first ported on

OpenCL. Details of the benchmarks that we have used in

experiments are given in Table III. Each benchmark has

different characteristics, while some of them include over 60

kernels, others have only 2 kernels. These kernels are device

implementations of independent tasks in these benchmarks.

Each kernel has been implemented and tailored for the target

device.

We have used different problem sizes to see the effect of

data size and other metrics on mapping. As can be seen in

Table IV, the tendency of kernels may change with different

problem sizes, this is basically due to the characteristics of

that particular kernel. For example, benchmark SP on class

W has a tendency to run on only CPU, while the kernels of

benchmark SP on class S have different tendencies.

B. Results

The mapping is done in two phases, collecting the profil-

ing information and generating the mapping. In the first step,

we profile the benchmarks on both CPU-only and GPU-only

systems separately. We also extract data access patterns. In

the second step, our algorithm generates a mapping based

on the profiling data. We tested our simulation on 5 different

NAS benchmarks [20] with smaller and larger data sizes.

84

Benchmark Names Description Parameters Class S Class W

BT
Solves multiple, independent systems of non
diagonally dominant, block tridiagonal equations.

grid size 12x12x12 24x24x24
no. of iterations 60 200

time step 0.01 0.0008

CG

Computes an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive
definite matrix by using a conjugate gradient
method.

no. of rows 1400 7000

no. of nonzero 7 8
no. of iterations 15 15
eigenvalue shift 10 12

Ep Evaluates an integral by means of pseudorandom
trials.

no. of random-number pairs 224 225

LU
A regular-sparse, block (5 x 5) lower and upper
triangular system solution.

grid size 12x12x12 33x33x33

no. of iterations 50 300
time step 0.5 0.0015

SP
Solves multiple, independent systems of non
diagonally dominant, scalar, pentadiagonal
equations.

grid size 12x12x12 36x36x36

no. of iterations 100 400
time step 0.015 0.0015

Table III
SHOWS THE BENCHMARK DESCRIPTIONS AND PROBLEM SIZES TAKEN FROM [10], [18].

Benchmark Execution Times Number of Kernels
Name CPU Only GPU Only Base Alg Improved Alg Total on CPU on GPU
BT-S 6,969 3,413 2,457 2,452 54 23 31
BT-W 32,126 12,616 6,297 6,297 54 24 30
CG-S 0,308 0,433 0,19 0,188 19 9 10
CG-W 0,521 2,55 0,278 0,263 19 14 5
EP-S 693,971 45,301 45,301 45,301 2 0 2
EP-W 370,042 97,082 97,082 97,082 2 0 2
LU-S 23,898 2,53 1,747 1,687 26 7 19
LU-W 66,829 18,916 9,755 9,621 26 17 9
SP-S 1,522 1,002 1,276 0,998 69 14 55
SP-W 7,961 12,806 7,961 7,961 69 69 0

Table IV
EXECUTION TIMES AND KERNEL DISTRIBUTIONS OF BENCHMARKS TESTED WITH DIFFERENT APPROACHES.

Figure 1. Execution times for GPU-only, CPU-only, Base, and Improved algorithms.

85

Figure 2. Speed up normalized with respect to the best single device execution with different data transfer times. Note that, mapping is also changing
according to the data transfer times.

Figure 3. Speed up normalized with respect to the base case (default data transfer times) with varying data transfer times.

Collected statistics and the results obtain our base and

improved algorithms are given in Table IV. The second and

third columns show the results for CPU-only and GPU-

only mappings, whereas the fourth and fifth columns show

our base and improved algorithms, respectively. Figure 1

shows the speed up normalized with respect to the best

single device execution with different data transfer times.

Based on these results, our base algorithm Algorithm 1

improves the best single device implementation in 9 out

of 10 benchmarks. The only exception is the SP-S bench-

mark, where GPU-only generates better results. As dis-

cussed above, this can be eliminated through the improved

algorithm, Algorithm 2. Improved algorithm outperforms

Algorithm 1 in all benchmarks tested as it already compares

the result generated by Algorithm 1. In some applications,

such as EP-S and EP-W , algorithm gives the same result as

GPU-only mapping, since it is faster to run the kernels of

these two benchmarks on GPU. Similarly, SP-W performs

best when executed on CPU-only mapping, and therefore,

our algorithms return the same mapping as the CPU-only

mapping.

Last three columns of Table IV give the kernel distribu-

tions when executed according to improved algorithm. As

can be seen from this table, majority of the applications

take advantage of the heterogeneity available in the system.

However, some of the benchmarks still favor CPU-only

and some others favor GPU-only mapping due to their

processing requirements and data dependencies.

Except the three benchmarks (EP-S, EP-W and SP-W)

mentioned earlier, all the benchmarks use both CPU and

GPU resources. Figure 2 and 3 shows the results for the

same algorithm with the same data but with scaling the data

transfer times between CPU and GPU, and vice versa. In

these figures, the effects of data transfer overhead on total

86

kernel execution time can be seen. Note that, the x-axis

shows the normalized data transfer times with respect to

the original data transfer time. For example, the first point

assumes that it takes 10x less amount of time to transfer the

data to the device and vice versa.

In addition, Figure 2 shows the speed up compared to

the best CPU-only or GPU-only mapping. EP-S, EP-W and

SP-W do not show any improvement. This is mainly due

to the fact that our algorithm also generates single device

mappings for these benchmarks.

It is expected to see that when data transfer time is

increased too much, all the kernels will tend to run on CPU

as the cost of running on GPU will outweigh the CPU.

Therefore, after a certain threshold, data transfer times will

dominate and our approach will only generate CPU-only

mappings.

In Figure 3, the speed up decreases continuously as the

data transfer cost is increased. This is because of the fact that

when GPU data transfer costs are really low, it is profitable

to run these benchmarks on the GPU with lower execution

times. However, as the data transfer cost increases, GPU is

becoming less attractive.

VI. CONCLUSION AND FUTURE WORK

Effective kernel mapping for multi-kernel applications

on heterogeneous platforms has significant importance to

exploit the provided hardware resources and obtain higher

performance. In this paper, we introduce an effective algo-

rithm to map the kernels of multi-kernel applications written

in OpenCL. We first use greedy approach to select the

most suitable device for a specific kernel by using profiling

information and enhanced it to avoid getting stuck in local

minima. Our initial experiments show that our approach

generates better mappings compared to a CPU-only and

GPU-only mapping. Although we used a single type of

CPU and GPU, we plan to extend this work to support

multiple CPUs, GPUs, and other accelerators. We also would

like to implement an Integer Linear Programming-based

(ILP) technique to compare our results with the optimal

mapping. Moreover, we plan to enhance the extraction of

kernel characteristics phase of our algorithm in a way that

it can generate a mapping on the fly. The algorithm will be

enhanced by using the machine learning-based techniques to

predict the execution times of kernels and data transfer cost

for available devices instead of using profiling information.

REFERENCES

[1] R. Gupta and G. De Micheli, “Hardware-software cosynthesis
for digital systems,” Design Test of Computers, IEEE, vol. 10,
no. 3, pp. 29 –41, sept. 1993.

[2] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Ar-
chitecture of field-programmable gate arrays,” Proceedings of
the IEEE, vol. 81, no. 7, pp. 1013 –1029, july 1993.

[3] C. J. Thompson, S. Hahn, and M. Oskin, “Using modern
graphics architectures for general-purpose computing: a
framework and analysis,” in Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture,
ser. MICRO 35. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2002, pp. 306–317. [Online]. Available:
http://dl.acm.org/citation.cfm?id=774861.774894

[4] M. Daga, A. Aji, and W. chun Feng, “On the efficacy of a
fused cpu+gpu processor (or apu) for parallel computing,”
in Application Accelerators in High-Performance Computing
(SAAHPC), 2011 Symposium on, july 2011, pp. 141 –149.

[5] “Khronos group, OpenCL - the open standard for parallel
programming of heterogeneous systems.” [Online]. Available:
http://www.khronos.org/opencl/

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for gpus: stream
computing on graphics hardware,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 777–786, aug. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015800

[7] “IBM CELL.” [Online]. Available: http://www.research.ibm
.com/cell/

[8] “AMD, Accelerated Parallel Programming SDK.” [Online].
Available: http://www.amd.com/ stream

[9] “NVIDIA, CUDA.” [Online]. Available: http://www.nvidia
.com/cuda

[10] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weer-
atunga, “The NAS parallel benchmarks summary and pre-
liminary results,” in Supercomputing, 1991. Supercomputing
’91. Proceedings of the 1991 ACM/IEEE Conference on, nov.
1991, pp. 158 –165.

[11] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting
parallelism on heterogeneous multiprocessors with adaptive
mapping,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO
42. New York, NY, USA: ACM, 2009, pp. 45–55. [Online].
Available: http://doi.acm.org/10.1145/1669112.1669121

[12] D. Grewe and M. F. P. O’Boyle, “A static task
partitioning approach for heterogeneous systems using
opencl,” in Proceedings of the 20th international
conference on Compiler construction: part of the
joint European conferences on theory and practice
of software, ser. CC’11/ETAPS’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 286–305. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987237.1987259

[13] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“Starpu: a unified platform for task scheduling on
heterogeneous multicore architectures,” Concurr. Comput.
: Pract. Exper., vol. 23, no. 2, pp. 187–198, feb. 2011.
[Online]. Available: http://dx.doi.org/10.1002/cpe.1631

[14] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand,
and Y. Robert, “Scheduling strategies for master-slave tasking
on heterogeneous processor platforms,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 15, no. 4, pp.
319 – 330, april 2004.

87

[15] C. Augonnet and R. Namyst, “Euro-par 2008 workshops -
parallel processing,” E. César, M. Alexander, A. Streit, J. L.
Träff, C. Cérin, A. Knüpfer, D. Kranzlmüller, and S. Jha, Eds.
Berlin, Heidelberg: Springer-Verlag, 2009, ch. A Unified
Runtime System for Heterogeneous Multi-core Architectures,
pp. 174–183.

[16] M. Daga, T. Scogland, and W. chun Feng, “Architecture-
aware mapping and optimization on a 1600-core gpu,” in
Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th
International Conference on, dec. 2011, pp. 316 –323.

[17] “AMD, Accelerated Parallel Processing OpenCL
Programming Guide.” [Online]. Available:
http://developer.amd.com/sdks/AMDAPPSDK/assets/
AMD Accelerated Parallel Processing OpenCL
Programming Guide.pdf

[18] “NAS parallel benchmarks problem sizes.” [Online].
Available: http://www.nas.nasa.gov/publications/
npb problem sizes.html

[19] S. Seo, G. Jo, and J. Lee, “Performance characterization of
the nas parallel benchmarks in opencl,” in Workload Charac-
terization (IISWC), 2011 IEEE International Symposium on,
nov. 2011, pp. 137 –148.

[20] “NASA, NAS parallel benchmarks.” [Online]. Available:
http://www.nas.nasa.gov/publications/npb.html

88

