
Adaptive Compute-phase Prediction and Thread
Prioritization to Mitigate Memory Access Latency

Ismail Akturk
Department of Electrical and Computer

Engineering
University of Minnesota

MN 55411, USA
aktur002@umn.edu

Ozcan Ozturk
Department of Computer Engineering

Bilkent University
Ankara 06800, Turkey

ozturk@cs.bilkent.edu.tr

ABSTRACT
The full potential of chip multiprocessors remains unex-
ploited due to the thread oblivious memory access sched-
ulers used in off-chip main memory controllers. This is
especially pronounced in embedded systems due to limita-
tions in memory. We propose an adaptive compute-phase
prediction and thread prioritization algorithm for memory
access scheduling for embedded chip multiprocessors. The
proposed algorithm efficiently categorize threads based on
execution characteristics and provides fine-grained priori-
tization that allows to differentiate threads and prioritize
their memory access requests accordingly. The threads in
compute phase are prioritized among the threads in mem-
ory phase. Furthermore, the threads in compute phase are
prioritized among themselves based on the potential of mak-
ing more progress in their execution. Compared to the prior
works First-Ready First-Come First-Serve (FR-FCFS) and
Compute-phase Prediction with Writeback-Refresh Overlap
(CP-WO), the proposed algorithm reduces the execution
time of the generated workloads up to 23.6% and 12.9%,
respectively.

1. INTRODUCTION
In response to increased pressure on memory subsystem

due to the memory requests generated by multiple threads,
an efficient memory access scheduler has to fulfill the follow-
ing goals:

• serve memory requests in a way that cores are kept as
busy as possible

• organize the requests in a way that the memory bus
idle-time is reduced

These goals are much more critical for embedded systems
due to limitations in memory. One approach to keep cores as
busy as possible is to categorize and prioritize threads based
on their memory requirements. Threads can be categorized
into two groups: memory-non-intensive (i.e., threads in com-
pute phase), and memory-intensive (i.e., threads in memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MES14 June 15 2014, Minneapolis, MN, USA
Copyright 2014 ACM 978-1-4503-2822-7/14/06 ...$15.00.
http://dx.doi.org/10.1145/2613908.2613919.

phase). Kim et al. [5] proposed a memory access scheduler
that gives higher priority to memory-non-intensive threads,
and gives lower priority to memory-intensive threads. The
reason behind such prioritization is that memory-non-intensive
threads (i.e., threads in compute phase) can make fast progress
in their executions, so the cores can be kept busy. On the
other hand, memory-intensive threads (i.e., threads in mem-
ory phase) have more memory operations and they do not
use computing resources as often.

Ishii et al. followed the same idea of prioritizing the
threads based on their memory access requirements. They
enhanced prioritization mechanism with a fine-grained pri-
ority prediction method. This fine-grained priority predic-
tion method is based on saturation counters [4]. They do
not rely on time quantum (typically some millions of cycles)
to categorize threads as memory-non-intensive and memory-
intensive, instead they employ saturation counters to catego-
rize threads on the fly. In addition, they proposed writeback-
refresh overlap that reduces memory bus idle-time. Writeback-
refresh issues pending write commands of the ranks that are
not refreshing and refreshes a given rank concurrently. This
means that the issuing write commands (of rank that is not
refreshing) and refreshing a rank are overlapped. This re-
duces the idle time of the memory bus and enhances the
performance of the memory subsystem.

2. PROBLEM STATEMENT
The necessity of distinguishing threads based on their

memory access requirements is well understood and many
research efforts have exploited this fact. Kim et al. [5] and
Ishii et al. [4] provided examples of thread classification and
prioritization mechanisms. They categorize threads into two
groups, namely memory-non-intensive (i.e., threads in com-
pute phase), and memory-intensive (i.e., threads in mem-
ory phase). Although they distinguish threads into different
groups, they do not differentiate the threads in the same
group. We believe that fine-grained prioritization is required
even for the threads in the same group (i.e., memory-non-
intensive or memory-intensive) to maximize the overall sys-
tem performance and utilize the memory subsystem at the
highest degree. For this reason, we introduce a fine-grained
thread prioritization scheme that can be employed by exist-
ing state-of-the-art memory access schedulers.

In addition to that, the thread classification scheme pre-
sented in the work of Ishii et al. [4] is based on saturation
counters. Saturation counters provide effective metrics to
understand threads to be in compute phase or in mem-

ory phase. In determination of this, interval and distance
thresholds are used. These thresholds are predefined and
determined empirically. Although they are effective, they
are vulnerable to short distortions and bursts that may re-
sult in wrong classification of threads. We believe that these
thresholds have to be updated appropriately depending on
the execution characteristics of the threads to classify them
with higher accuracy. For this reason, we enhanced phase
prediction scheme of Ishii et al. and make it adaptive.

3. MOTIVATION
The classification of threads running on chip multipro-

cessors is essential to improve memory subsystem perfor-
mance. Since the execution characteristics of the threads
may change during their lifetime, such a classification has
to be updated accordingly. Mainly, a thread can be either
in compute phase, or memory phase for a given time of its
execution. For this reason, the detection of a phase that
a thread is currently in and prediction of the phase that
a thread is going to be in have significant importance in
scheduling memory accesses. There has to be a memory
access scheduler that can predict the execution phases of
threads efficiently, and prioritize them to access memory.
The prioritization has to be fine-grained and the phase de-
tection has to be accurate, thereby motivating us to imple-
ment fine-grained prioritization and adaptive phase predic-
tion in memory access scheduler.

4. ADAPTIVE COMPUTE-PHASE PREDIC-
TION

Ishii et al. [4] proposed a memory access scheduling algo-
rithm that we call Compute Phase Prediction with Writeback-
Refresh Overlap (CP-WO). Compute Phase Prediction with
Writeback-Refresh Overlap scheduler can predict the exe-
cution phase of a thread on the fly. Typically there are
two phases a thread may be in. A thread may be either
in compute phase, or in memory phase. The threads in
compute phase are memory-non-intensive. On the other
hand, the threads in memory phase are memory-intensive.
The threads in compute phase are given higher priorities for
memory accesses. The reason behind this is that the threads
in compute phase can make fast progresses and keep cores
busy, thereby improving the performance and enhancing the
utilization. On the other hand, the threads in memory phase
spend more time on memory and have less computation,
thus leave cores idle. For this reason, the threads in com-
pute phase are prioritized.

The idea of prioritizing the threads in compute phase (i.e.,
memory-non-intensive) is also used by Kim et al. [5] in their
thread cluster memory (TCM) scheduler. The thread cluster
memory scheduler classifies threads into two groups, namely,
memory-non-intensive threads and memory-intensive threads.
It prioritizes the memory access requests of memory-non-
intensive threads over memory-intensive threads. The prior-
itized memory-non-intensive threads will spend less amount
of time on memory operations and return back to the exe-
cution much earlier. This way, cores in an embedded chip
multiprocessor can be kept as busy as possible, increasing
the throughput and improving the performance.

The thread cluster memory scheduler classifies threads
whenever the time quantum exceeds a certain threshold, typ-
ically in the range of million cycles. Threads are classified

at the beginning of each quantum based on memory access
patterns. Due to the dynamic behavior of threads, their
execution characteristics (i.e., memory access pattern) may
change before the time quantum expires. If this is the case,
threads have to be re-clustered to properly prioritize them.
However, the thread cluster memory scheduler does not have
capability of re-clustering threads before the time quantum
expires. Threads are treated as they started, although they
may change their execution phase, which in turn, requires
adjustments in priorities of threads. For this reason, the
thread cluster memory scheduler can not respond to the
changes in memory access patterns of threads in a timely
manner. Due to this limitation, it blindly misses possible
improvements on performance and fairness.

To overcome the barrier in thread cluster memory sched-
uler, Ishii et al. employed saturation counters to classify
threads. Saturation counters help to respond to changes in
memory access pattern of a thread in a faster manner com-
pared to time quantum approach of thread cluster memory
scheduler. Another difference between thread cluster mem-
ory scheduler and the scheduler of Ishii et al. is that the
former uses memory traffic generated by L2 cache miss to
cluster threads, while the latter uses the committed number
of instructions to cluster threads. We believe that the for-
mer provides better indication of threads being in compute
phase, or in memory phase.

Ishii et al. used saturation counters to determine if a
thread is in compute phase or in memory phase. These sat-
uration counters are interval counter and distance counter.
The interval counter specifies the number of committed in-
structions between the last two cache misses for a thread. If
an interval counter (i.e., δi) of a thread exceeds the interval
threshold (i.e., τ i), then thread is predicted to be in compute
phase and the distance counter (i.e., δd) is set to zero. On
the other hand, the distance counter is incremented if the
interval counter stays below the interval threshold. If there
are consecutive accesses whose interval counter stays below
the interval threshold that leads distance counter to exceed
the distance threshold (i.e., τd), then a thread is considered
to be in memory phase. The distance threshold determines
how long a thread is going to be treated as it is in compute
phase; although, it does not satisfy the interval counter con-
straint. This allows tolerating short distortions and small
bursts that may be seen in compute phase and thereby, not
treating a thread to be in memory phase, immediately. How-
ever, it is important to decide how long to tolerate a thread
that does not satisfy the interval counter constraint before
considering it to be in memory phase and vice versa.

The distance threshold (τd) and the interval threshold
(τ i) are predefined in the original work. The higher dis-
tance threshold becomes inappropriate for most of the cases
since it keeps a thread in compute phase longer; although
the thread actually is in memory phase. On the other hand,
smaller distance threshold makes a thread vulnerable to short
distortions and bursts, so a thread is treated as it is in mem-
ory phase; although, it is in compute phase. To deal with
such anomalies, we introduced an adaptive compute-phase
prediction scheme. Adaptive compute-phase prediction al-
lows us to determine the distance threshold on the fly by
monitoring memory access characteristics of a thread. The
distance threshold determined adaptively tolerates short dis-
tortions and bursts that can be seen in compute phase, as
it is in the original work. More importantly, adaptively

determined distance threshold helps to predict the execu-
tion phase changes earlier compared to predefined distance
threshold. The illustration of original compute-phase pre-
diction is given in Figure 1. Similarly, the illustration of
adaptive compute-phase prediction is given in Figure 2.

Figure 1: Default compute-phase prediction.

In Figure 1, the predefined distance threshold (τd) is set to
five. Light boxes indicate that interval counter constraint is
satisfied (i.e δi exceeds τ i). Dark boxes indicate that interval
counter constraint is not satisfied (i.e δi stays below τ i).
The distance counter (δd) is incremented if interval counter
constraint is not satisfied and reset otherwise. When the
distance counter (δd) exceeds the distance threshold (τd is
five in this illustration), the thread is considered to be in
memory phase. The thread is considered to be in compute
phase when it satisfies interval counter constraint again.

On the other hand, in Figure 2, our adaptive compute
phase prediction scheme observes that the interval counter
constraint is satisfied, except consecutive two cache misses.
By using this observation, our adaptive compute phase pre-
diction determines that there is no need to consider a thread
in compute phase if the distance counter (δd) exceeds two.
Whenever the third consecutive access that does not satisfy
interval counter constraint is occurred, adaptive compute-
phase prediction concludes that a thread exits compute phase
and goes into memory phase. Note that, adaptive compute-
phase prediction can detect the change in execution phase
much earlier. Thus, adaptive compute-phase prediction in-
creases the accuracy of prediction and reduces the time re-

Figure 2: Adaptive compute-phase prediction.

quired which leads to improved overall performance and fair-
ness.

5. ADAPTIVE THREAD PRIORITIZATION
As described earlier, threads are classified into two groups.

Threads in compute phase are prioritized over threads in
memory phase. However, it is possible to have multiple
threads in compute phase. In the scheduler of Ishii et al.,
the memory requests of threads in compute phase are ser-
viced in the order they have received. Although it allows
threads to make progress and keep cores busy, it misses pos-
sible performance benefits that could be obtained through
fine-grained prioritization among threads of the same group.

We observed that prioritizing threads based on their po-
tentials of making more progress on their execution increases
the system performance even further. For this reason, we
enhanced prioritization scheme of Ishii et al. in a way that
threads in the same group are prioritized based on their po-
tentials of making progress in their execution. when their
memory requests serviced by the memory controller. We call
this fine-grained prioritization scheme as adaptive thread pri-
oritization since the priorities of threads are determined on
the fly.

The usage of adaptive thread prioritization differs for threads
in different groups (i.e., memory-non-intensive and memory-
intensive). Adaptive thread prioritization works for threads
in compute phase as follows. Among the threads in com-

pute phase, the one that has the highest potential to make
more progress is prioritized. On the other hand, threads in
memory phase are prioritized based on whether they exhibit
page hit and rank/bank locality. The adaptive thread pri-
oritization is used as a tie breaker for threads in memory
phase when there are multiple threads that exhibit page hit
or rank/bank locality with recent memory accesses.

The reason behind prioritizing threads in compute phase
based on the progress they can make (i.e., employing adap-
tive thread prioritization) is to keep cores busy as much as
possible. While cores are kept busy to execute threads in
compute phase, the memory controller can service to mem-
ory requests of other threads. Thus, a thread that has more
potential to keep a core busy for a longer period of time is
prioritized over others.

On the other hand, if there is no thread in compute phase,
then the main goal becomes to maximize memory through-
put and reduce latency. For this reason, threads that ex-
hibit row-buffer hit or rank/bank locality are given higher
priorities. If there is no row-buffer hit, then the threads ac-
cessing the same bank/rank that was accessed recently are
prioritized. When there are multiple threads that exhibit
row-buffer hit, or bank/rank locality with recent memory
access, then the adaptive thread prioritization is used to de-
cide which thread is going to be prioritized.

We also employ aging in order to provide fair access to
the memory. After a certain period of time, regardless of
whether a thread is in compute phase or not, it is given
the highest priority to avoid starvation. Threads that have
low memory-level parallelism are also prioritized over other
threads to let them finish their memory operations and con-
tinue on their execution as soon as possible.

6. CONCLUSION
We introduce an adaptive compute-phase prediction and

thread prioritization algorithm for embedded memory schedul-
ing. It adaptively decides whether a thread is in compute
phase or in memory phase. The threads in compute phase
are prioritized among the threads in memory phase. Also,
the threads in compute phase are prioritized among them-
selves based on the potential progress they can make in their
execution. Compared to FR-FCFS and CP-WO, it reduces
the execution time of workloads up to 23.6% and 12.9%,
respectively. Similarly, it reduces the total system power
compared to FR-FCFS and CP-WO by 1% and 1.6%, re-
spectively.

7. REFERENCES
[1] N. Chatterjee, R. Balasubramonian, M. Shevgoor,

S. Pugsley, H., N. Udipi, Aniruddha, A. Shafiee,
K. Sudan, M. Awasthi, and Z. Chishti. USIMM: the
utah simulated memory module. Technical report,
University of Utah, UUCS-12-002, 2012.

[2] I. Hur and C. Lin. A comprehensive approach to dram
power management. In High Performance Computer
Architecture, 2008. IEEE 14th International
Symposium on, pages 305 –316, feb. 2008.

[3] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement
learning approach. In Proceedings of the 35th Annual
International Symposium on Computer Architecture,
pages 39–50, Washington, DC, USA, 2008.

[4] Y. Ishii, K. Hosokawa, M. Inaba, and K. Hiraki. High
performance memory access scheduling using
compute-phase prediction and writeback-refresh
overlap. In Proceedings of 3rd JILP Workshop on
Computer Architecture Competitions, Portland, OR,
USA, 2012.

[5] Y. Kim, M. Papamichael, O. Mutlu, and
M. Harchol-Balter. Thread cluster memory scheduling:
Exploiting differences in memory access behavior. In
Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
65–76, Washington, DC, USA, 2010.

[6] MSC. 3rd jilp workshop on computer architecture
competitions (jwac-3): Memory scheduling
championship (msc).
http://www.cs.utah.edu/ rajeev/jwac12/, jun. 2012.

[7] J. Mukundan and J. Mart́ınez. Morse: Multi-objective
reconfigurable self-optimizing memory scheduler. In
High Performance Computer Architecture, 2012. IEEE
18th International Symposium on, pages 1 –12, feb.
2012.

[8] O. Mutlu and T. Moscibroda. Stall-time fair memory
access scheduling for chip multiprocessors. In
Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
146–160, Washington, DC, USA, 2007.

[9] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness
of shared dram systems. In Proceedings of the 35th
Annual International Symposium on Computer
Architecture, pages 63–74, Washington, DC, USA,
2008.

[10] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and
J. D. Owens. Memory access scheduling. In
Proceedings of the 27th annual international
symposium on Computer architecture, pages 128–138,
New York, NY, USA, 2000.

[11] J. Stuecheli, D. Kaseridis, H. C.Hunter, and L. K.
John. Elastic refresh: Techniques to mitigate refresh
penalties in high density memory. In Proceedings of
the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 375–384, Washington, DC,
USA, 2010.

