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Abstract. Modern collaborative science has placed increasing burden on data management infrastructure to handle the increas-
ingly large data archives generated. Beside functionality, reliability and availability are also key factors in delivering a data
management system that can efficiently and effectively meet the challenges posed and compounded by the unbounded increase
in the size of data generated by scientific applications. We have developed a reliable and efficient distributed data storage sys-
tem, PetaShare, which spans multiple institutions across the state of Louisiana. At the back-end, PetaShare provides a unified
name space and efficient data movement across geographically distributed storage sites. At the front-end, it provides light-weight
clients the enable easy, transparent and scalable access. In PetaShare, we have designed and implemented an asynchronously
replicated multi-master metadata system for enhanced reliability and availability, and an advanced buffering system for improved
data transfer performance. In this paper, we present the details of our design and implementation, show performance results, and
describe our experience in developing a reliable and efficient distributed data management system for data-intensive science.
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1. Introduction There are two main components in a distributed data
management architecture: a data server which coor-

A data-intensive cyber-infrastructure has become dinates physical access (i.e., writing/reading data sets
increasingly important in interdisciplinary research to/from disks) to the storage resources, and a meta-
projects that are generating ever larger data archives data server which provides global name space to en-
and requiring ever more sophisticated data manage- sure location transparency of data as well as storage
ment services to handle these archives. Simply pur- resources, and keeps all related information regarding
chasing high-capacity, high-performance storage sys- the system. Along with other design issues and sys-
tems and adding them to the existing infrastructure of tem components, metadata server layout has impact
the collaborating institutions does not solve the under- on the following system features: availability, scala-

bility, load balancing and performance. The metadata
server is generally implemented as a single central en-
tity which makes it a performance bottleneck as well
as a single point of failure. Obviously, replication of
the metadata server is necessary to ensure high avail-
ability as well as increased local performance. On the
other hand, a replicated multi-metadata server archi-

*Corresponding author: Tevfik Kosar, Department of Computer tecture comes with some challenges such as synchro-
Science and Engineering, State University of New York, Buffalo, nization of these servers, data coherency and overhead
NY, USA. E-mail: tkosar@buffalo.edu. of synchronization.

lying and highly challenging data management prob-
lems. Scientists are compelled to spend a great amount
of time and energy on solving basic data-handling is-
sues, such as how to find out the physical location of
data, how to access it, and/or how to move it to visual-
ization and/or compute resources for further analysis.
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Metadata servers can be synchronized either syn-
chronously or asynchronously. In synchronous replica-
tion, incoming request that requires metadata update is
propagated to all metadata servers before it gets com-
mitted. Metadata information is updated if and only if,
all metadata servers agree to commit the incoming re-
quest. Propagating update messages to all replicating
metadata servers and receiving corresponding confir-
mations takes time which degrades the metadata access
performance. To eliminate the overhead of synchro-
nization of metadata servers in synchronous replica-
tion, we exploit asynchronous replication. Asynchro-
nous replication allows a metadata server to process the
incoming request by itself without propagating the re-
quest to all replicating servers immediately. Metadata
servers are updated asynchronously in the background.
This dramatically increases performance for metadata
access, especially for write operations. One of the chal-
lenges in asynchronous metadata replication is provid-
ing metadata consistency across all sites.

There have been many efforts in parallel and dis-
tributed data management systems to provide large I/O
bandwidth [4,16,23]. However, metadata management
is still a challenging problem in widely distributed
large-scale storage systems. Scalability in file meta-
data operations for parallel filesystems has been stud-
ied in [5]. In [12], I/O operations are delegated to a
set of nodes to overcome I/O contention. GPFS [15]
handles metadata and data management separately and
it uses shared lock mechanism to enable simultane-
ous updates to file metadata from multiple clients. Col-
lective communication patterns are proposed between
storage servers to simplify consistency controls. In [20,
21], metadata workload has been distributed among
multiple servers for performance and scalability. With
its dynamic subtree partitioning, Ceph [20] provides
adaptability and failure detection for changing envi-
ronment conditions. It also performs lazy commits in
metadata operations to improve performance. I/O bot-
tleneck is one of the bottlenecks in parallel scientific
computation [9]. Adaptability, reliability, latency be-
tween resources and utilization of available capacity
are some of the challenges in distributed data manage-
ment to provide an efficient infrastructure [2,3].

In this paper, we present the design and imple-
mentation of a reliable and efficient distributed data
storage system that we have developed, PetaShare,
which spans multiple institutions across the state of
Louisiana. In Section 2, we will give a brief intro-
duction to PetaShare and its underlying technologies;
Section 3 will present the design and implementation

of the asynchronous multi-master metadata replication
in PetaShare; Section 4 will discuss our work on ad-
vanced buffer to improve data transfer performance;
and Section 5 will conclude the paper.

2. PetaShare

The NSF funded PetaShare project aims to en-
able transparent handling of underlying data sharing,
archival, and retrieval mechanisms, and make data
available to scientists for analysis and visualization
on demand. The goal is to enable scientists to fo-
cus on their primary research problems, assured that
the underlying infrastructure will manage the low-level
data-handling issues. Our initial implementation and
deployment of PetaShare involves five state univer-
sities and two health sciences centers in Louisiana.
These institutions are Louisiana State University, Tu-
lane University, University of New Orleans, University
of Louisiana at Lafayette, Louisiana Tech University,
Louisiana State University, Shreveport and Louisiana
State University—Health Sciences Center in New Or-
leans. PetaShare manages 250 terabytes of disk storage
distributed across these sites as well as 400 terabytes
of tape storage centrally located nearby LSU campus.
For connecting all of the participating sites together,
PetaShare leverages 40 Gbps high bandwidth and low-
latency optical network: LONI, the Louisiana Optical
Network Initiative [1,10]. The internal network con-
nection of LONI resources and the distribution of the
PetaShare resources among the LONI sites are shown
in Fig. 1.

PetaShare provides scientists with simple uniform
interfaces to store, access and process heterogeneous
distributed data sources. The archived data is well cat-
aloged to enable easy access to the desired files or
segments of files, which can then be returned to the
requester in a chosen format or resolution. Multiple
copies of high priority information can be stored at dif-
ferent physical locations to increase reliability and also
enable easier retrieval by scientists in different geo-
graphical locations. The data is also indexed to enable
easy and efficient access to the desired data. The re-
quested data is moved from the source or archival sites
to the computation sites for processing as required,
and the results then sent back to the interested par-
ties for further analysis or back to the long term stor-
age sites for archival. To improve data transfer perfor-
mance, we introduced advanced buffer to our system,
we will elaborate in Section 4.

The back-end of PetaShare, as illustrated in Fig. 2
is based on enhanced version of iRODS and Stork
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Fig. 1. Louisiana Optical Network Initiative and PetaShare sites.
(Colors are visible in the online version of the article; http:/
dx.doi.org/10.3233/SPR-2011-0317.)
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Fig. 2. PetaShare architecture.

technologies which provide a unified name space and
efficient data movement across geographically distrib-
uted storage sites. iRODS stores all the system in-
formation, as well as user-defined rules in central-
ized database, which is called iCAT. iCAT contains
the information of the distributed storage resources, di-
rectories, files, accounts, metadata for files and sys-
tem/user rules. iRODS provides a generic client API
to control the iCAT. We try to utilize and enhance this
API for achieving better performance and reliability
for PetaShare. iRODS is based on client/server archi-
tecture [22]. A sample deployment contains an iCAT
server along with multiple iRODS servers on each site.
These iRODS servers manage the accesses to the phys-

ical data in the resources. They interact with iCAT
server to control the accesses to the resources. As it can
be easily noticed, the existence of central iCAT server
is a single point of failure. Since the iCAT server is
the only authority to provide unified namespace and
all system information, the overall system becomes un-
available whenever iCAT server fails. To overcome this
problem, we introduced asynchronous replication into
iCAT, we will discuss it in Section 3.

2.1. Client tools

PetaShare provides three different client tools for its
users: petashell, petafs and pcommands. Petashell is an
interactive shell interface that catches system I/O calls
made by an application and maps them to the relevant
iRODS I/O calls. Petafs is a userspace virtual filesys-
tem that enables users to mount PetaShare resources
to the local machines. Pcommands are a set of UNIX-
like commands that are specialized for interacting with
PetaShare. These tools differ from each other in terms
of their capabilities and usage. For example, petafs can
be used in systems that their kernels have FUSE [6]
support. Contrary, petashell and pcommands do not re-
quire any kernel level support. Further discussions be-
low make it clear why there are three different client
tools.

Pcommands allow users to access PetaShare re-
sources, and provide fundamental data access utilities,
such as listing, copying, moving, editing and deleting.
However, shortcoming of Pcommands is that data on
PetaShare cannot be transparently accessed by the user
applications that are run locally. Pcommands can work
to stage in/out the data between PetaShare resources
and local machine. However, in most cases the sizes
of input and output data of applications are exceeding
the storage limits of the machines on where application
runs. Furthermore, it is usually impractical to deploy
the application into where the data resides due to rea-
sons such as incompatibility of machines, copyrights,
licenses and security. This is why transparent remote
access to data is important for the user applications.

This is the case where petashell and petafs come
into the picture. They make it possible to run appli-
cations without staging in/out the data to/from local
machines, or deploy the application to the machines
where the data reside. The motivation behind petashell
and petafs is that users should be able to run their
own applications in their machines while the required
and produced data stay on remote resources. Further-
more, users should be unaware of the details of con-
necting to remote resources, interacting applications
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Fig. 3. Layered view of PetaShare client tools.

with the remote data and locating the data physically.
All these operations should be transparent to the users.
In PetaShare, applications interacts with remote data
through petashell and petafs that translate the I/O re-
quests made by user application into the respective
iRODS I/O calls. These calls provide the required data
or store the produced data in PetaShare system and up-
date iCAT database. The oveview of PetaShare client
tools and their interactions with low-level iRODS com-
ponents are shown in Fig. 3.

As it can be seen in Fig. 3, the client tools use
iRODS API to call relevant iRODS operations at the
lowest level to handle I/O requests of an application.
Petashell uses an existing open-source software, Par-
rot [19], to catch system I/O calls of an application and
to match them with the respective iRODS I/O calls. On
the other hand, petafs pretends as a filesystem to handle
system I/O calls and maps filesystem calls to respec-
tive the iRODS calls through a special interface called
FUSE. Pcommands use iRODS API to access the data
on PetaShare.

2.1.1. Petashell

Petashell is an interactive shell interface that al-
lows users to run their applications on their machines
while data resides on remote PetaShare resources. That
means, there is no need to move the data to the ma-
chine where application runs, or port the application to
where data resides. Petashell attaches application and
data together while both are physically separated.

Petashell is based on Parrot which is a tool for
attaching running programs to remote I/O systems

$ cat /petashare/sutempZone/home/useri fileToRead
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Fig. 4. Mapping system /O calls to iRODS calls via petashell. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2011-0317.)

through the filesystem interface [18]. The main idea
behind Parrot is to catch system I/O calls and translate
these calls into the corresponding I/O operations of re-
mote system. Basically, the system calls of an appli-
cation are trapped through the ptrace debugging tool,
and corresponding remote I/O operations are sent to
the remote system. Currently, Parrot offers service for
various remote systems, such as http, ftp, gridftp, glite
and iRODS [17]. In our case, iRODS service libraries
are used to implement petashell where system I/O calls
of application are translated into the respective iRODS
I/O routines. For example, if a user runs cat utility
to read a file on PetaShare resource, then Parrot cap-
tures the I/O calls (i.e., fstat, open, read, write, close)
made by cat, and maps these 1/O calls to correspond-
ing iRODS calls (i.e., rcObjStat, rcDataObjOpen, rc-
DataObjRead, rcDataObjClose). This is illustrated in
Fig. 4. Here, cat is run in petashell interface where
/petashare specifies the service that is being used in
Parrot (basically PetaShare service uses iRODS service
libraries of Parrot), /lsu specifies the name of PetaShare
site that is going to be accessed, and /fempZone states
the name of current zone in PetaShare. Petashell instal-
lation requires no kernel modification, so unprivileged
users can run it without worrying about low-level sys-
tem and permission issues [13].

2.1.2. Petafs

Petafs is a virtual filesystem that allows users to
access PetaShare resources as a local filesystem af-
ter being mounted to their machines. By using petafs,
PetaShare resources can be seen in the directory hier-
archy of an existing filesystem and can be accessed in
the same way as an existing filesystem.
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Petafs is based on FUSE (Filesystem in Userspace)
which is a simple interface to export a virtual filesys-
tem to the Linux kernel in userspace [6]. FUSE inter-
acts with the existing filesystem at the kernel level and
maps virtual filesystem calls to the existing filesystem
calls. Petafs provides a FUSE module for iRODS that
matches iRODS calls with FUSE calls in the FUSE li-
brary. In the kernel, FUSE incorporates with the real
filesystem and maps these FUSE calls to the actual
filesystem calls. This is done through FUSE library in a
similar way to matching iRODS calls with FUSE calls.

The communication between kernel module and
FUSE library is established by specifying a file de-
scriptor which is obtained from /dev/fuse device file.
This file descriptor is passed to the mount system call
to match up the file descriptor with the mounted petafs
virtual filesystem [6]. Installation of petafs requires
kernel support for FUSE, so it is appropriate for priv-
ileged users. However, unprivileged users can still use
petafs if their kernels support FUSE already.

2.1.3. Pcommands

Pcommands are command-line utilities to access
PetaShare. They evoking the basic UNIX-like com-
mands, such as pls, pcp, pmkdir where UNIX counter-
parts are Is, cp, mkdir, respectively. These commands
interact with PetaShare directly by using iRODS API.

Pcommands are based on iRODS i-commands. The
iRODS i-commands are command-line utilities of
iRODS that interface to an iRODS system [14]. Pcom-
mands differ from i-commands by providing trans-
parent interface for multiple iRODS servers. In our
case, PetaShare is composed of several iRODS servers
where we want to make users unaware of the details of
each of these iRODS servers. Pcommands provide an
interface where users only need to know the name of
the PetaShare site that they want to access. After pro-
viding the name of the PetaShare site, pcommands au-
tomatically adjust the iRODS environment files to ac-
cess to the desired PetaShare site.

Pcommands also provide some additional utilities
such as pchangeuser that enables users to switch be-
tween their existing PetaShare accounts (note that
PetaShare accounts are created for project groups, not
for individuals, so a user may have permission to ac-
cess multiple PetaShare accounts if the user is involved
in different research groups). Pcommands enable users
to access PetaShare storage resources who are using
various types of operating systems; such as Linux, So-
laris, MacOS and AIX.

3. Asynchronous multi-master metadata
replication

As discussed in the previous chapter, PetaShare
based on iRODS and iCAT has a major weakness since
there is a single point of failure. The failure of iCAT
server that keeps complete system information makes
the overall system failed unavailable, since there is no
authority that provides globally unified namespace to
access the resources. To solve this issue, we attempted
to replicate iCAT server, the replication of iCAT server
should be transparent, but not affect the performance
of the system. We cloned the PetaShare system on
the testbed and replicated iCAT servers synchronously.
Unfortunately, we obtained high latency and perfor-
mance degradation on data transfers while each trans-
fer is committed after iCAT servers complete replicat-
ing themselves. As a result, we decided to develop an
asynchronous replication system.

3.1. Conflict detection and resolution

The biggest problem of asynchronous multi-master
replication is that conflicts occur if two sites up-
date their databases within the same replication cycle.
For this reason, the proposed multi-master replication
method should detect and resolve possible conflicts.
However, it is well known that detecting and resolving
conflicts require complex algorithms. Fortunately, we
have built a conceptual conflict resolver that handles
such conflicts efficiently. Common conflict types are:
(i) uniqueness conflicts: occur if two or more sites try
to insert the records with the same primary key; (ii) up-
date conflicts: occur if two or more sites try to up-
date the same record within the same replication cycle;
(iii) delete conflicts: occur if one site deletes a record
from database while another site tries to update this
record.

Typically, conflict resolution mechanisms are based
on timestamps. However, we also introduce intelligent
database design to eliminate some of these conflicts.
For example, in the iCAT database, each object is given
a unique ID within increasing sequence of big int type.
If two separate sites insert new records into the data-
base within the same replication cycle, then these two
records will have the same ID in which case a unique-
ness conflict occurs. To eliminate uniqueness conflicts,
we divide the range of big int type into the certain-
sized intervals (i.e., relative to the number of sites).
Then, these intervals are assigned to different sites.
Dividing ID space into the intervals allows each site
to assign an ID to an inserted record from a disjoint
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sequence of IDs. For example, we assigned an inter-
val of 10,000 and 8,000,000 to the first iCAT server,
8,000,001 and 16,000,000 to the second iCAT server,
and so on. Thus, if two sites insert new records within
the same replication cycle, we are ensured that these
records will have different IDs and uniqueness con-
flicts never occur in iCAT database. On the other hand,
update conflicts occur if two or more sites try to up-
date the same record within the same replication cy-
cle. Using timestamps is the most famous technique
to resolve such conflicts. There are two ways of us-
ing timestamps. The first one is to use latest timestamp
value [11]. This is the simplest technique since up-
dates are run sequentially where the latest update (i.e.,
the latest timestamp value) overwrites all the previous
updates. The second one is to use earliest timestamp
value [11]. This is more complex than the first tech-
nique where all conflicting updates should be identified
and only the first one (i.e., earliest timestamp value)
should be processed.

We identified two different update types occurred
in the ICAT database and developed different conflict
resolution methods for them. The first type of updates
target only the tables of iCAT database, such as updat-
ing accounts and permissions. The second type of up-
dates target also the data stored in the resources, such
as writing a file.

The update conflicts of the first type are resolved
by negotiation. For example, an update conflict occurs
if two sites update the password of the same account
within the same replication cycle. Then, both sites are
informed that an update conflict has occurred and ne-
gotiation process is started. They have to decide which
update should be accepted and replicated. During the
process of negotiation, the latest timestamp value is
used to resolve the conflict temporarily. If there is no
agreement within a certain amount of time (i.e., 24 h),
the latest timestamp value becomes concrete and con-
flict is considered as resolved.

The update conflicts of the second type are resolved
in the following way. The update request for data
can be done in any site regardless the physical lo-
cation of the data. So, if an update request is made
for the data that reside in a remote resource, then the
iRODS server should send the update request along
with the changes (i.e., changed bytes) to the corre-
sponding iRODS server. This iRODS server accepts
the update requests from only one site for the same data
within a replication cycle. Other sites that try to update
the same data within the same replication cycle receive
update-rejected message from the correspond-
ing iRODS server.

Another case in which the update conflicts of the
second type can occur is that if two iRODS servers try
to add new files with the same file name to the same
PetaShare directory (although files are located in dif-
ferent resources). The update conflict occurs since both
files have the same name; although, they have unique
IDs. This type of conflicts are also resolved by ne-
gotiation. The first concern of us is the data safety.
We ensure that the written files are in safe in the re-
sources. However, the conflict appears in the unified
namespace has to be resolved. For this reason, when-
ever such a conflict is detected, our proposed conflict
resolver automatically changes the names of the con-
flicting files. For example, if two files have the name of
fileA, then one of the file name becomes fileA_1. After-
wards, the conflict resolver acknowledges both iRODS
server that conflict has been occurred and file name
has been changed. A user has a flexibility to accept the
changed file, or rename it. These updates for the file
name are also replicated among all sites.

The delete conflicts are treated in the same way of
update conflicts. However, there is an additional con-
trol on delete operations. If a file is deleted, it is first
moved to a special directory called trash. To delete
this file permanently, a special command has to be
used. However, the usage of this command is not al-
lowed within the same replication cycle with the dele-
tion of that file. This is done to prevent undesired cir-
cumstances. For example, a delete conflict occurs if a
site requests an update for a file that is deleted by an-
other site within the same replication cycle. However,
if user does not agree on delete operation, then file can
be rescued and updated since it is kept in the trash dur-
ing the replication cycle. On the other hand, file can be
deleted permanently if no delete conflict occurs within
a replication cycle.

3.2. Implementation of asynchronous multi-master
metadata replication

Metadata information is kept in a relational data-
base and managed by metadata server. Thus, meta-
data server replication and database replication can be
used interchangeably. Implementing replication logic
in database itself is complicated and creates extra work
for database. For this reason, we design and imple-
ment our own replication tool called MASREP (Multi-
master ASynchronous REPlication) which is main-
tained separately from the database. MASREP runs on
the background and lets metadata server to run on its
own. This allows database not deal with replication,
and makes all replication related issues transparent to
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the database and users. Moreover, it provides flexibil-
ity of changing replication settings without interrupt or
stop metadata servers.

Our replication strategy is based on transaction logs
generated by databases. The databases to be replicated
are configured to log only Data Manipulation Lan-
guage (DML) statements (i.e., insert, update, delete)
in their transaction logs. All statements in the transac-
tion log correspond to one of the metadata update made
in that metadata server. For this reason, these state-
ments have to be replicated among all other metadata
servers to make them all consistent and synchronized.
Other operations, such as read operations, are handled
by running select statements on metadata server. Since
select statements do not change metadata information
of any object, they are not needed to be replicated; thus,
we avoid them to be logged in transaction log.

MASREP is responsible for processing transac-
tion logs and sending/receiving them to/from its coun-
terparts in all other replicating metadata servers.
MASREP acts as a database client when it processes
requests received from other metadata servers. It con-
sists of five main components which are coordinat-
ing replication and synchronization related operations
in the system. These components are extractor, dis-
patcher, collector, injector and conflict resolver. Along
with these components, MASREP maintains two types
of statement queues: outgoing-queues and incoming-
queue. Outgoing-queues are used to store the state-
ments that must be propagated to metadata servers to
make them synchronized. There are separate outgoing-
queues for each replicating metadata server. On the
other hand, incoming-queue is used to store the state-
ments that have been received from other metadata
servers. The components of asynchronous replication
tool and interaction among them are shown in Fig. 5.

We define a replication cycle that identifies the se-
quence of actions have to be made to replicate and syn-
chronize metadata servers. Basically, it is a duration
of time in which all replication related functions have
been completed. Replication cycle starts with execut-
ing statements stored in incoming-queue (i.e., by injec-
tor), and goes on with extracting statements from trans-
action log of metadata server, and filling them into the
respective outgoing-queues (i.e., by extractor). Then,
statements in outgoing-queues are sent to the respec-
tive metadata servers (i.e., by dispatcher). After this
step, there is pre-defined waiting (i.e., sleeping) pe-
riod. A replication cycle finishes when waiting period
is over, and a new replication cycle starts. It is ex-
pected that all metadata servers become synchronized

at the end of the replication cycle. Although, it is said
that synchronizing metadata servers once in a minute
is sufficient [8], we synchronize all metadata servers in
every 30 s to reduce the duration of inconsistencies. We
observed that all metadata servers become synchro-
nized before any request comes for updated data object
through other metadata servers. A typical replication
cycle is shown in Fig. 6.

In MASREDP, extractor component process transac-
tion log of replicating metadata server to find the state-
ments that have been committed within last replica-
tion cycle. Also, it is responsible for eliminating the
statements that have been received from other meta-
data servers. It is worth to mention that transaction
log contains both the statements that are originated in
actual metadata server, and also the statements that
are received from other metadata servers. If the state-
ments that are received from other metadata servers
are propagated again to other metadata servers, meta-
data servers will receive the statements that they have
executed before and they will re-run and re-send the
these statements which creates infinite loop. For this
reason, extractor is responsible for extracting the state-
ments that are originated in the actual metadata server.
Only these statements should be propagated to other
metadata servers to make them synchronized. Extrac-
tor makes copies and moves these statements (if any)
that have to be replicated into the outgoing-queue of
each metadata server.

Dispatcher is responsible for propagating the state-
ments (i.e., statements that have been filled by ex-
tractor) in the outgoing-queues to the respective meta-
data server. If dispatcher sends these deferred state-
ments to the respective metadata server successfully,
then these statements are removed from respective
outgoing-queue. If dispatcher cannot send statements
in particular outgoing-queue of a metadata server, then
these statements are kept in the outgoing-queue of re-
spective metadata server. Dispatcher retries to send
these statements in the next replication cycle. Collector
is responsible to collect the statements that are propa-
gated from other metadata servers. When a statement
has been received, collector stores it in the incoming-
queue. Collector consistently listens to receive state-
ments. Injector acts as a database client. Basically,
it asks database to process the statements stored in
incoming-queue. These statements have to be executed
in order to make metadata server synchronized with
others. If a statement in incoming-queue is success-
fully executed by metadata server, then it is moved out
from the incoming-queue and stored in archive. If any
error or conflict occurs, then conflict resolver is called
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Fig. 5. Components of asynchronous multi-master replication tool. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2011-0317.)

and conflict resolver deals with the conflict as dis- Defining the duration of waiting period in replica-
cussed in previous section. The flowchart of the asyn- tion cycle is highly dependent on how long an ap-
chronous multi-master replication procedure is shown plication can survive or tolerate inconsistent metadata

in Fig. 7. servers in the system. There are also other factors such
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as network, space allocated for queues, and frequency
of updating metadata servers. The asynchronous repli-
cation method that we have developed does not only
improve reliability of the PetaShare system, but also
leads us to achieve lower network overhead compared
to the synchronous replication. It also outperforms the
central iCAT model since the operations are made on
the local iCAT server and replicated asynchronously.
The quantitative assessment of asynchronous replica-
tion is given in Section 3.3.

3.3. Results

The replicated iCAT servers make PetaShare sys-
tem more reliable. They also reduce the latency since
the requests can be handled by local iCAT servers.
However, the replication method can influence the op-
eration time dramatically. For example, synchronous
replication method increases the latency, since each
database operation should be approved by all iCAT
servers before getting committed. On the other hand,
asynchronous replication method eliminates such la-
tency. Of course, asynchronous replication has its own
challenges and threats; however, we discussed them in
Section 3. In this section, we compare the replication
methods, and show the positive affects of asynchro-
nous replication method on the system performance.

We have performed our tests on a testbed in LONI,
on the same environment that real PetaShare system
runs. We use Pcommands as a client interface in these
tests. We have performed tests for writing to remote
site, writing to local site, reading from remote site and
reading from local site. These different categories of
tests let us to see the characteristics of replication mod-
els and to draw a better conclusion regarding the per-
formance of the models. In each test, we used 1000
files of the same size and a single file that has the size
of 1000-file-bytes. By doing this, we can see the effect
of the number of files on overall time. On the database,
the number of operations increases while the number
of files increases. This introduce database overhead
along file open/close overhead. We repeated this strat-
egy for different size of files to see the correlation be-
tween the file size and database and file open/close
overheads. We use the data sets of 10 KB x 1000 files
and a 10 MB file, 100 KB x 1000 files and a 100 MB
file, and 1 MB x 1000 files and a 1 GB file.

The most expensive operation is to write a file in a
remote resource. In central iCAT server model, write
request should be sent to the iCAT server while file
is sent to the remote resource. The requirement of
these two distinct remote connection increases the la-
tency and network traffic. In synchronous replication

Table 1

Average duration of writing to remote PetaShare resources for three
replication scenarios

Writing to remote PetaShare resources

No Synchronous  Asynchronous
replication replication replication
10K x 1000 files 75.94 240.32 38.81
10M (single file) 1.38 1.48 1.34
100K x 1000 files 83.53 247.43 47.76
100M (single file) 2.51 2.96 2.83
IM x 1000 files 156.61 320.96 144.53
1G (single file) 9.91 11.68 10.31

method, the latency and network traffic increases dra-
matically, since a write request should be forwarded
to the all iCAT servers. Note that this is done for the
sake of increasing the reliability of the system. On the
other hand, a write request can be handled in local
iCAT server in asynchronous replication method. The
overhead of getting unified namespace information and
updating database is minimized, since there is a local
iCAT server. The main source of the latency is to send
a file to the remote resource. Table 1 shows the aver-
age time of writing different data sets to the remote re-
source for all three replication methods.

As we can see from Table 1, time required to write
1000 files is much bigger than writing a single 1000-
file-sized file. This is the case because writing 1000
files requires 1000 writing request on iCAT server, as
well as 1000 file open/close calls at both ends, op-
posed to single writing request on iCAT and single file
open/close operation of a 1000-file-sized file. The ef-
fects of replication methods can be seen in respective
columns. All the replication methods have similar val-
ues for single files, since time is dominated by send-
ing data instead of iCAT operation. However, when
the number of file is increased to 1000, each method
can be identified easily. It is obvious that synchronous
replication method is the worst one since it replicates
1000 write requests to the other iCAT servers. Central
1CAT gives better performance than synchronous repli-
cation method since it requires to send write request to
only one iCAT server. The asynchronous method out-
performs the other two methods since write requests
are handled by local iCAT server.

It is worth to note time does not increase linearly
with the size of files. The ratio of time to write 1000 file
and 1000-file-sized file becomes smaller when the file
size increases. This is simply because the time spent
to send the data to the resource hides the overhead
of database and file open/close operations (i.e., these
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Table 2

Average duration of writing to local PetaShare resource for three
replication scenarios

Table 3

Average duration of reading from remote PetaShare resources for
three replication scenarios

Writing to local PetaShare resource

Reading from remote PetaShare resources

No Synchronous  Asynchronous No Synchronous  Asynchronous

replication replication replication replication replication replication
10K x 1000 files 63.51 221.33 19.92 10K x 1000 files 46 40.75 26.51
10M (single file) 0.25 0.46 0.15 10M (single file) 1.58 1.74 1.47
100K x 1000 files 64.42 223.06 21.38 100K x 1000 files 55 48.92 34.13
100M (single file) 0.58 1.02 0.47 100M (single file) 3.44 3.54 3.29
IM x 1000 files 75.02 232.48 36.75 IM x 1000 files 166.98 157.43 144.98
1G (single file) 5.16 9.18 8.37 1G (single file) 14.47 11.55 9.57
overheads are independent from the file size). In the Table 4

last row of Table 1, central iCAT model has smaller
value than asynchronous replication method. How-
ever, this was because temporary network congestion
occurred that increases the average of asynchronous
replication method when 1 GB file has been sent. We
believe that it is not essential to draw a general picture.

Table 2 shows the average time of writing different
data sets to the local resource for all three replication
methods. Writing to local resource is less expensive
than writing to remote resource, since there is no net-
work latency to send the data to the remote resource.
This situation lets us to evaluate the performance of
replication methods, because the contribution of data
transfer to the latency is minimized besides the contri-
bution of the database and file open/close operations
is fixed. Although, it takes less time to write files to
local resources than remote resources, the conclusions
derived from the tests are very similar. For all data sets
the asynchronous replication method outperforms the
others, since both write and database operations are
done locally. Similar to the first case, the central iCAT
model gives better results than synchronous replica-
tion.

Table 3 shows the average time of reading differ-
ent data sets from the remote resources for all three
replication methods. The biggest difference of reading
than writing is that it requires less database transac-
tion on iCAT server. A writing a file requires insert
and update operations on different tables while read-
ing a file requires a select (i.e., to learn physical ad-
dress of data) operation on database. This alleviates the
pressure on replication methods, especially synchro-
nous replication method. It is worth to note in Table 3
that synchronous replication method performs better
than central iCAT. This is because reading request
can be replicated faster among iCAT servers since
there is no need to negotiate on it (i.e., it is a select

Average duration of reading from local PetaShare resource for three
replication scenarios

Reading from local PetaShare resource

No Synchronous  Asynchronous
replication replication replication

10K x 1000 files 24.33 23.63 17.8

10M (single file) 0.2 0.36 0.14
100K x 1000 files 25.57 25.23 19.43
100M (single file) 0.42 1.4 0.43
1M x 1000 files 31.94 38.08 25.43
1G (single file) 7.34 14.06 3.25

operation). However, synchronous replication method
stays behind the asynchronous replication method. Ta-
ble 4 shows the average time of reading different data
sets from the local resources for all three replication
methods. The asynchronous replication method per-
forms the best while synchronous replication method
and central iCAT model draw close performance for
smaller files. The performance of synchronous replica-
tion method starts to draw away from the central iCAT
model whenever the file size starts to increase. How-
ever, this was not the case in the tests of reading from
remote resources. This can be explained as file is read
from remote resource where network latency has a big-
ger contribution to the spent time. The contribution of
network latency increases that hides the overhead of
the synchronous replication as the file size increases.
However, the contribution of network latency disap-
pears if file is read from local resource. For this reason,
the overhead of the synchronous replication method
becomes obvious.

The results of the tests allow us to conclude that
asynchronous replication outperforms central iCAT
model and synchronous replication method. The syn-
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chronous replication method introduces high latency
that degrades overall system performance. On the other
hand, central iCAT server model gives reasonable re-
sults as opposed to synchronous replication method;
however, it threats reliability of the system since it is a
single point of failure. However, these results validate
that asynchronous replication method satisfies the per-
formance requirements while it improves the reliability
of the system.

3.4. Scalability and performance benchmarking

With improved reliability and availability of meta-
data server, quality of service of PetaShare has been
greatly improved. However, with the exponential
growth of the amount of scientific data as well as
the increasingly interdisciplinary nature of modern
science, scientific data management must also address
the issues of cross-domain data access in a heavily
data-intensive environment. In this section, we present
scalability and performance benchmarking results we
conducted in preparation for the development of meta-
data management system that can support efficient and
scalable cross-domain data access.

For scalability, four rounds of tests were conducted.
First round consists of attaching data object metadata
to 100,000 data objects; second round consists of at-
taching data object metadata to 200,000 data objects;
third and fourth rounds each consists of attaching data
object metadata to 300,000 and 400,000 data objects,
respectively. Each individual data object will be at-
tached with an set of ten triples data object metadata, as
shown in Table 5. So together, after 4 rounds of expan-
sion, the system now contains ten millions metadata
triples in total. A vastly improved scalability bench-
mark than our previous experiments registered [7].

For performance benchmarking, Fig. 8 contains
benchmarks of five rounds of performance tests on four
key metadata operations respectively. Each rounds of
test consists of tests ranging in size from 1 to 10,000
data objects, since metadata attached to each data ob-
ject in our benchmarking tests consist of 10 triples,
the maximum number of triples benchmarked in these
tests is 100,000. As illustrated in Fig. 8(a)—(c), perfor-
mance of insertion, deletion and modification of data
object metadata shows strong linear positive correla-
tion to the number of triples involved. Absolute per-
formance wise, the results indicate that it is far more

Table 5
Selective data-object metadata
Location DateOfcreation Filetype Size Name
Institution Creator Resolution  Department  Project

costly in time to insert and modify data object meta-
data than delete data object metadata. It takes days
to insert and modify 100,000 triples into data object
metadata store while it only takes hours to delete same
number of triples from data object metadata store. The
performance of insertion, comparing to our previous
work [7], is improved considering the size of triples
in data object metadata store increases ten times while
the time taken to insert similar number of triples only
doubles. Performance of modification, however, sig-
nificantly deteriorates comparing to previous work [7],
even after considering the much more data-intensive
environment, cause of performance degradation is not
clear at this stage, we plan to conduct more tests in the
future to understand and improve performance of mod-
ification of data object metadata.

On the other hand, performance of query of data ob-
ject metadata largely remains constant as the number
of triples involved increases, as shown in Fig. 8(d). In
terms of absolute performance, however, query of data
object metadata does not perform as well as hoped as
time taken to finish a query that returns relatively small
number of data objects still reaches several minutes,
the relatively unsatisfactory performance of data ob-
ject query is related to the size of the data set, namely,
data set contains up to 1 million data objects and
metadata store has up to 10 millions triples stored,
in a less data-intensive environment, performance of
query operation should conceivably improve, our pre-
vious work [7] indicates that query performance in
a less data-intensive environment is vastly improved,
nonetheless, more tests are needed to definitively prove
the hypothesis.

4. Advance buffer to improve performance of data
transfers

In this section, we give details of our study on per-
formance of PetaShare client tools. As mentioned in
Section 2, although, petashell and petafs client in-
terfaces provide a convenient way for accessing to
PetaShare resources, they come with extra cost in
terms of performance due to overhead of I/O forward-
ing. Every read/write request is converted to an iRODS
request and sent over the network to the server. In ad-
dition to the network latency, there is also overhead
at server side in receiving and processing each I/O
operation. We have observed that transferring small
blocks, especially over a low-latency network, results
in poor application performance. Therefore, fetching
large amount of data at once has great impact on per-
formance of data transfers. For that reason, we have



T. Kosar et al. / PetaShare: A reliable, efficient and transparent distributed storage management system 39

(a) Insertion Performance

All Rounds
180000 r
160000 [
140000
120000
‘g‘ 100000 [
g 2
E 80000 A o
& r
60000 |- //
40000 [ -
.-"“
20000 [ -
° . 2 . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 000 10000
# of Flles
{c) Modffication Performance
Alt Rounds
T T T T
200000 | 3
150000 |-
g
2
£ 100000
<3
50000 |-
» L L . L
0 2000 4000 6000 8000 10000
# ot Flles

(b) Deletion Performance

All Rounds
10000 T T T T

Time (sec)

4000 =~

o 2000 4000 6000 8000
#of Flles

10000

(d) Query Performance

All Rounds

Time (sec)

L s L L
] 2000 4000 €000 B0OD
# ot Files

Fig. 8. Performance benchmarks for: (a) insertion; (b) deletion; (c) modification; (d) query.

optimized petafs and petashell clients by aggregating
I/O requests to minimize the number of network mes-
sages.

Petafs and petashell write/read library functions ac-
cepts 1/O calls for the file with offset and size as ar-
guments. However, default block size for petafs using
Unix commands is 4K for writes and 8K for reads.
Thus, users would be reading and writing in small
chunks of data from the server. For petashell client,
writes and reads are in 64K blocks. On the other hand,
pcommands use 32 MB blocks for transferring data.
In Table 6, we show average results both from a client
machine outside the LONI network (dsl-turtle), and a
machine within the LONI network (quenbee). Those
inefficient results of petafs and petashell led us to en-
hance the PetaShare clients for better performance in
data transfers.

One option is to force users to read and write large
blocks of data inside their applications. It is known that
minimizing number of messages sent over the network

by increasing the data size in each message will im-
prove the overall throughput. However, standard Unix
commands are highly preferred by our user commu-
nity, and we would like to provide a transparent ac-
cess to data resources while achieving desirable perfor-
mance. Therefore, we have implemented prefetching
for read operations, and caching for write operations
by delaying I/O requests. There is no need to force user
programs to write or read large chunks of data. Since it
is done automatically, standard Unix commands such
as cp benefit from advance buffer inside petafs and
petashell clients.

The advance buffers in petafs and petashell act as
a prefetch cache. Without any optimization, the off-
set and the size of data sent to the server, and the re-
quested block is read and passed to the user. We keep
a prefetch buffer in the client tool for each file. Instead
of reading a small data chunk, we request and receive
a larger block which includes the requested data and
subsequent blocks of the file. Data read from the server
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Table 6

Read and write performance comparison of Pcommands (pput &
pget), petashell and petafs

Read performance (Mb/s) —read to dsl-turtle from:

Isu tulane ull uno
pget 91.61 89.43 90.14 90.85
petashell 45.31 13.63 22.02 13.99
petafs 22.35 5.44 9.06 5.33

Write performance (Mb/s) — write from dsl-turtle to:

Isu tulane ull uno
pput 23.66 20.62 25.29 26.55
petashell 14.74 9.46 11.55 9.04
petafs 6.48 3.60 6.22 3.61

Read performance (Mb/s) — read to queenbee from:

Isu tulane ull uno
pget 740.17 648.61 723.16 683.86
petashell 208.33 16.79 34.64 16.09

Write performance (Mb/s) — write from queenbee to:

Isu tulane ull uno
pput 460.91 645.28 658.79 653.66
petashell 253.18 24.88 50.60 23.66

is stored in a buffer assuming that subsequent calls will
fall into the buffer. Therefore, there is no need to access
the server for every incoming call. We process subse-
quent blocks from this prefetch buffer instead of re-
questing from the server.

Implementation details are described as follows. Af-
ter receiving a read request, the client tool checks
whether any prefetch buffer has been created for the
file. The prefetch buffer is a contiguous sequence of
data, such that we keep the beginning and the end off-
set of that data inside the cache. If the requested block
falls into the prefetch cache, the client processes and
copies data from the cache instead of requesting from
the server. Otherwise, a new data chunk with the size
of the buffer is read from the server starting from the
beginning offset specified in the I/O call. The requested
block in the I/O call is copied from the cache and re-
turned to the user, and the rest of the data inside the
buffer is kept for further requests.

The technique described above works well for se-
quential file accesses. If requested block size is larger
than the buffer size, prefetching process is bypassed
and data is directly requested from the server. For ran-
dom reads and writes, advance buffer implementation
might put unnecessary cost. If write calls are not com-

ing in a contiguous order, the data inside the buffer is
synchronized to the server and the advance buffer is
initialized to zero. Same condition might happen for
read operations, such that subsequent blocks might not
fall into the buffer. However, our main focus is to en-
hance the sequential operations which is a common
case in our system. Therefore, advance buffer imple-
mentation work over the existing mechanism for per-
formance optimization by aggregating I/O requests.

Dealing with write operations is more complex. The
client tool stores incoming write blocks instead of
sending each write request to the server, such that we
delay /O calls and combine requests to minimize the
number of messages over sent over the network. For
each file, we keep a write buffer which is separate from
the prefetch buffer used for read operations. There can
be only one active buffer at a time; the client uses ad-
vance buffer either for sequential read operations or se-
quential write operations. For an incoming write I/O
call, the client first checks if there is any active buffer.
If so, the block to be written is appended and informa-
tion about the buffer is updated. If there is no space
in the buffer, data inside the buffer is first sent to the
server as a write request. Later, we form a new cache
buffer and store the blocks provided by the following
I/O calls. Before delaying any write operation and stor-
ing data inside the buffer, we ensure that it is a sub-
sequent request by controlling the offset and the size.
If not, the process starts from beginning and the buffer
is flushed to the server. Besides, if we receive a read
request, we make sure the client writes data from the
buffer to the server and deactivate the write buffer.
Same happens when the file is closed, such that the
buffer is synchronized before closing the file.

We emphasize that advance buffer implementation
is basically for sequential reads and writes. One impor-
tant problem is data consistency that may happen due
to delaying I/O operations. We try to ensure data con-
sistency by controlling beginning offsets before fetch-
ing data from the buffer. First, we make sure that read
requests are coming in a sequential order. Later, we
maintain two separate read and write modes for the
buffers. As an example, the prefetch buffer will be de-
activated when the client receives a write request. So,
the following I/O calls will be forced to make another
request from the server. Same situation happens for
write operations. The advance buffer for write opera-
tions will be deactivated and synchronized to the server
whenever a read request is received. We ensure that in-
coming write calls and also read calls are coming in a
sequential order.
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Fig. 9. Performance of petafs and petashell with advanced buffer. (Colors are visible in the online version of the article; http://dx.doi.org/

10.3233/SPR-2011-0317.)

In our experiment testbed, there are 4 major remote
sites and the metadata database is on [su site. We have
experimented data transfer performance from two dif-
ferent client machines with different access patterns
to PetaShare sites. Dsl-turtle is outside of the LONI
network and it has slow access to 4 PetaShare sites.
Queenbee is inside the LONI network and it has much

faster access to all of those 4 sites. Results are average
values of 3-5 separate runs. We have used cp command
and collected average throughput of 3-5 separate runs
for copying 1, 10 and 100 MB files. The x-axis (buffer
size) in Fig. 9 is in log scale. We forced client tools
to use a fixed data chunk size for each network I/O
call, such that I/O requests to the server are rearranged
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to fit into the buffer size. As can be seen in Fig. 9,
we use large buffer size, we minimize the number of
network I/O calls to the server, and thus increase the
performance. Especially, we see better improvement in
read operation as in Fig. 9(a) and (c). Petashell puts ex-
tra costs by making many systems calls for tracing I/O
calls. Thus, we see a lot of fluctuation in Fig. 9(d). On
the other hand, petashell client makes extra connection
caching which was not available in petafs at the time
when we performed those experiments.

The advance buffer simply aggregates I/O calls us-
ing a simple logic to improve performance of sequen-
tial operations. The size of the advance buffer both in
petafs and petashell can be set by user as a command
argument to PetaShare client tools.

5. Conclusion

In this paper, we have presented the design and im-
plementation of a reliable and efficient distributed data
storage system, PetaShare, which spans multiple insti-
tutions across the state of Louisiana. PetaShare pro-
vides an asynchronously replicated multi-master meta-
data system for enhanced reliability and availability,
and an advanced buffering system for improved data
transfer performance. Our results show that our asyn-
chronous multi-master replication method can achieve
both high performance, reliability and availability at
the same time. We gave a brief overview of the bench-
marking tests we did for key metadata operations. We
have also presented the design and implementation of
the advanced buffer system for improved data trans-
fer performance. For future work, we plan to improve
conflict resolver in asynchronous replication to ensure
stability of our production PetaShare system. We also
plan to enhance the advance buffer implementation by
making buffer size dynamic, such that buffer size will
increased by adapting to the frequency of incoming I/O
operations.
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