21 research outputs found

    Myocardial insulin resistance in experimental uraemia

    Get PDF
    Cardiac complications are a major cause of death in patients with chronic kidney disease (CKD). Left ventricular hypertrophy (LVH) is a significant contributing factor to uraemic cardiomyopathy and results in significant molecular, cellular and metabolic remodelling. Progression of LVH leads to the development of insulin resistance, a feature common to CKD and heart failure, further jeopardising survival of the uraemic heart.The aim of this thesis was to investigate the effect of uraemia on cardiac physiology, function and metabolism. Specifically, the aim of the study was to examine the cellular mechanisms underlying the development of myocardial insulin resistance in uraemia.The experimental model was induced surgically via a two-stage 5/6 nephrectomy in adult male Sprague-Dawley rats over three, six weeks or nine weeks. An integrated experimental approach combining in vivo and ex vivo methods was used to characterize the morphology and physiology of the experimental model, examine myocardial function and energy provision; assess alterations in myocardial protein expression and determine potential mechanism involved in the development of insulin resistance.Uraemic animals exhibited impaired renal function (creatinine 69±2 vs. 40±2 uM n=41; p<0.05), cardiac hypertrophy (dry heart weight: tibia length 0.5±0.01 vs. 0.4±0.01 g/cm; n=30; p<0.05), impaired glucose tolerance, hyperinsulinaemia, anaemia and hypertension.In perfused hearts, uraemia caused a limited response of the uraemic heart to an increase in workload, demonstrated by cardiac dysfunction and metabolic adaptation. This profile was exacerbated in the presence of insulin. In vivo studies highlighted that insulin sensitivity was reduced in uraemic animals (HOMA-IR 1.27±0.3 vs. 0.58±0.1; n=8 p<0.02) and declined progressively with renal dysfunction. LV tissue from the uraemic model showed an increase in myocardial GLUT4 and normal insulin mediated translocation mechanism.In conclusion, uraemic animals exhibited a reduction in insulin sensitivity, glucose intolerance and hyperinsulinaemia, indicating onset of insulin resistance after 6 weeks of uraemia. Profile of myocardial GLUT4 expression and response to insulin stimulation suggested that insulin resistance is not a consequence of impaired translocation. The lack of overt metabolic remodelling suggests a compensatory phase of left ventricular hypertrophy

    Determinants of COVID-19 immunisation uptake in a country with high mortality and a low vaccination rate

    Get PDF
    Background Research concerned with attitudes towards COVID-19 vaccination in upper middle-income countries such as Bosnia and Herzegovina (B&H) is scarce. Currently, B&H has the lowest number of fully vaccinated adults in Europe, and the highest cumulative number of COVID-19 deaths and SARS-CoV-2 infected individuals. The aim of our study was to examine the factors associated with COVID-19 vaccination status in B&H. Methods An online survey among 1304 B&H adults was conducted in October 2021 evaluating vaccine acceptance, together with socio-demographic variables, attitudes and beliefs related to COVID-19 vaccination. Results The results from a binary logistic regression indicate that those who believed that the COVID-19 vaccine was effective were 45 times more likely to be vaccinated compared to those who did not. We also show that those who had received childhood immunisations were 41 times more likely to be vaccinated against COVID-19 compared to those who had never been previously immunised. Other significant factors were related to respondents’ trust in government institutions and healthcare policymakers as well as trust in public healthcare workers. Conclusion We suggest that future vaccination campaigns should be aimed at educating the public regarding the importance and safety of vaccines, together with strengthening trust in the public health system

    Ribose supplementation alone or with elevated creatine does not preserve high energy nucleotides or cardiac function in the failing mouse heart

    Get PDF
    Background: Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP) are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE). Methods and Results: Four groups were studied: sham; myocardial infarction (MI); MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN) pool was decreased to a similar amount (8–14%) in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV) dysfunction (3-fold reduction in ejection fraction) and LV hypertrophy (32–47% increased mass). Ejection fraction closely correlated with infarct size independently of treatment (r2 = 0.63, p&lt;0.0001), but did not correlate with myocardial creatine or TAN levels. Conclusion: Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated

    Chronic creatine kinase deficiency eventually leads to congestive heart failure, but severity is dependent on genetic background, gender and age

    Get PDF
    The creatine kinase (CK) energy transport and buffering system supports cardiac function at times of high demand and is impaired in the failing heart. Mice deficient in muscle- and mitochondrial-CK (M/Mt-CK(−/−)) have previously been described, but exhibit an unexpectedly mild phenotype of compensated left ventricular (LV) hypertrophy. We hypothesised that heart failure would develop with age and performed echocardiography and LV haemodynamics at 1 year. Since all previous studies have utilised mice with a mixed genetic background, we backcrossed for >10 generations on to C57BL/6, and repeated the in vivo investigations. Male M/Mt-CK(−/−) mice on the mixed genetic background developed congestive heart failure as evidenced by significantly elevated end-diastolic pressure, impaired contractility, LV dilatation, hypertrophy and pulmonary congestion. Female mice were less severely affected, only showing trends for these parameters. After backcrossing, M/Mt-CK(−/−) mice had LV dysfunction consisting of impaired isovolumetric pressure changes and reduced contractile reserve, but did not develop congestive heart failure. Body weight was lower in knockout mice as a consequence of reduced total body fat. LV weight was not significantly elevated in relation to other internal organs and gene expression of LVH markers was normal, suggesting an absence of hypertrophy. In conclusion, the consequences of CK deficiency are highly dependent on genetic modifiers, gender and age. However, the observation that a primary defect in CK can, under the right conditions, result in heart failure suggests that impaired CK activity in the failing heart could contribute to disease progression. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00395-012-0276-2) contains supplementary material, which is available to authorized users

    Intracellular sodium elevation reprograms cardiac metabolism

    Get PDF
    Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodeling occurs. We assessed whether acute (75μM ouabain 100nM blebbistatin) and chronic myocardial Naiload (PLM3SA mouse) are causally linked to metabolic remodeling and whether the hypertrophied failing heart shares a common Na-mediated metabolic ‘fingerprint’. Control (PLMWT), transgenic (PLM3SA), ouabain treated and hypertrophied Langendorff-perfused mouse hearts were studied by 23Na, 31P, 13C NMR followed by 1H NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorated the metabolic changes. In silico modelling indicated altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camitomay be a new approach to ameliorate metabolic dysregulation in heart failure

    Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    Get PDF
    Aims: Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results: Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions: Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases

    Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation

    Get PDF
    Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress
    corecore