85 research outputs found

    Penetration of Non-energetic Hydrogen Atoms into Amorphous Solid Water and their Reaction with Embedded Benzene and Naphthalene

    Full text link
    Chemical processes on the surface of icy grains play an important role in the chemical evolution in molecular clouds. In particular, reactions involving non-energetic hydrogen atoms accreted from the gaseous phase have been extensively studied. These reactions are believed to effectively proceed only on the surface of the icy grains; thus, molecules embedded in the ice mantle are not considered to react with hydrogen atoms. Recently, Tsuge et al. (2020) suggested that non-energetic hydrogen atoms can react with CO molecules even in ice mantles via diffusive hydrogenation. This investigation was extended to benzene and naphthalene molecules embedded in amorphous solid water (ASW) in the present study, which revealed that a portion of these molecules could be fully hydrogenated in astrophysical environments. The penetration depths of non-energetic hydrogen atoms into porous and non-porous ASW were determined using benzene molecules to be >50 and ~10 monolayers, respectively (1 monolayer ~ 0.3 nm).Comment: 30 pages, 4 figures, 1 table; accepted for publication by Ap

    Diffusive hydrogenation reactions of CO embedded in amorphous solid water at elevated temperatures ~70 K

    Get PDF
    The surface processes on interstellar dust grains have an important role in the chemical evolution in molecular clouds. Hydrogenation reactions on ice surfaces have been extensively investigated and are known to proceed at low temperatures mostly below 20 K. In contrast, information about the chemical processes of molecules within an ice mantle is lacking. In this work, we investigated diffusive hydrogenation reactions of carbon monoxide (CO) embedded in amorphous solid water (ASW) as a model case and discovered that the hydrogenation of CO efficiently proceeds to yield H2CO and CH3OH even above 20 K when CO is buried beneath ASW. The experimental results suggest that hydrogen atoms diffuse through the cracks of ASW and have a sufficient residence time to react with embedded CO. The hydrogenation reactions occurred even at temperatures up to ~70 K. Cracks collapse at elevated temperatures but the occurrence of hydrogenation reactions means that the cracks would not completely disappear and remain large enough for penetration by hydrogen atoms. Considering the hydrogen-atom fluence in the laboratory and molecular clouds, we suggest that the penetration of hydrogen and its reactions within the ice mantle occur in astrophysical environments. Unified Astronom

    Interactions of Atomic and Molecular Hydrogen with a Diamond-like Carbon Surface: H2 Formation and Desorption

    Get PDF
    The interactions of atomic and molecular hydrogen with bare interstellar dust grain surfaces are important for understanding H2 formation at relatively high temperatures (>20 K). We investigate the diffusion of physisorbed H atoms and the desorption energetics of H2 molecules on an amorphous diamond-like carbon (DLC) surface. From temperature-programmed desorption experiments with a resonance-enhanced multiphoton ionization (REMPI) method for H2 detection, the H2 coverage-dependent activation energies for H2 desorption are determined. The activation energies decrease with increasing H2 coverage and are centered at 30 meV with a narrow distribution. Using a combination of photostimulated desorption and REMPI methods, the time variations of the surface number density of H2 following atomic and molecular hydrogen depositions are studied. From these measurements, we show that H2 formation on a DLC surface is quite efficient, even at 20 K. A significant kinetic isotope effect for H2 and D2 recombination reactions suggests that H-atom diffusion on a DLC surface is mediated by quantum mechanical tunneling. In astrophysically relevant conditions, H2 recombination due to physisorbed H-atoms is unlikely to occur at 20 K, suggesting that chemisorbed H atoms might play a role in H2 formation at relatively high temperatures.Comment: 33 pages, 8 figures, Accepted for publication in Ap

    Safety of Silk-elastin Sponges in Patients with Chronic Skin Ulcers: A Phase I/II, Single-center, Open-label, Single-arm Clinical Trial

    Get PDF
    Background: Although traditional wound dressings such as collagen scaffolds promote granulation tissue formation, the efficacy of these dressings in chronic wounds is limited because of high susceptibility to bacterial growth. Biomaterials that can be applied to chronic wounds should have an anti-bacterial function. We previously reported that administering a silk-elastin solution that forms moisturizing hydrogels to wound surfaces of diabetic mice reduced bacterial growth and promoted granulation tissue formation compared with control or carboxymethyl cellulose hydrogels. We hypothesized that silk-elastin promotes wound healing in human chronic wounds by suppressing bacterial growth. Methods: An open-label, clinical case series was conducted with a prospective, single-arm design at Kyoto University Hospital in Kyoto, Japan. In this study, 6 patients with chronic skin ulcers of any origin (2 < ulcer area (cm2) < 25) on their lower extremities were included; patients with critical ischemia were excluded. Silk-elastin sponges were applied and covered with a polyurethane film without changing the dressing for 14 days. Inflammation triggered treatment discontinuation due to fear of infection. The primary study endpoint was adverse events, including inflammation and infection. Results: Poor hydrogel formation, possibly due to continuous exudation, was observed. No serious adverse events were noted. Two patients discontinued treatment on day 6 and day 7, respectively, due to inflammation, but they were not infected. The other 4 patients completed the 14-day silk-elastin sponge treatment without infection. Conclusion: Silk-elastin sponge is safe for chronic skin ulcers, and its ability to promote wound healing should be determined by confirmatory clinical trials

    Complete response to pembrolizumab in advanced hepatocellular carcinoma with microsatellite instability

    Get PDF
    Hepatocellular carcinoma (HCC) has limited systemic treatment options and a poor prognosis. The immune checkpoint inhibitor pembrolizumab was recently approved for the treatment of solid tumors with microsatellite instability (MSI). However, its clinical utility for the management of HCC remains to be clarified. Here, we present a case of unresectable HCC with MSI that showed an impressive response to pembrolizumab treatment. A 64-year-old man with chronic HCV infection was diagnosed with a large HCC. His severe liver dysfunction and poor performance status prevented any treatment option other than sorafenib. However, sorafenib failed after a few days due to the rapid progression of the tumor. Based on the finding of MSI in a biopsy specimen, immunotherapy using pembrolizumab was initiated. A dramatic improvement in his general condition and a reduction in tumor size were observed after the initiation of pembrolizumab treatment. Among a cohort of 50 consecutive patients with advanced HCC who were refractory to standard systemic therapy, MSI was found only in the present case. Immune checkpoint blockade therapy induced prominent anti-tumor effects in HCC with MSI. Screening for defects in DNA mismatch repair function may be warranted in HCC patients despite the low frequency of MSI

    TDP-43 regulates cholesterol biosynthesis by inhibiting sterol regulatory element-binding protein 2

    Get PDF
    Dyslipidemia is considered an essential component of the pathological process of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disease. Although TAR DNA Binding Protein 43 kDa (TDP-43) links both familial and sporadic forms of ALS and cytoplasmic aggregates are a hallmark of most cases of ALS, the molecular mechanism and the in vivo relation of ALS dyslipidemia with TDP-43 have been unclear. To analyze the dyslipidemia-related gene expression by TDP-43, we performed expression microarray and RNA deep sequencing (RNA-Seq) using cell lines expressing high levels of TDP-43 and identified 434 significantly altered genes including sterol regulatory element-binding protein 2 (SREBP2), a master regulator of cholesterol homeostasis and its downstream genes. Elevated TDP-43 impaired SREBP2 transcriptional activity, leading to inhibition of cholesterol biosynthesis. The amount of cholesterol was significantly decreased in the spinal cords of TDP-43-overexpressed ALS model mice and in the cerebrospinal fluids of ALS patients. These results suggested that TDP-43 could play an essential role in cholesterol biosynthesis in relation to ALS dyslipidemia

    Chiral Ice Crystals in Space

    Get PDF
    We observed the formation of CO, CH3OH, and H2O ices using a cryogenic transmission electron microscope, to determine if chiral ice crystals could form under the conditions of interstellar molecular clouds and young stellar objects (protoplanetary disks) and to clarify the crystalline structure of these ices. Our results suggest that the following ice crystals are chiral: crystalline CO (α-CO) formed on amorphous H2O (a-H2O) grains in a 10-K molecular cloud, crystalline CH3OH formed by the heating of amorphous CH3OH on a-H2O grains at 40–60 K in young stellar objects, and several polymorphs of hydrogen-ordered cubic ice crystals formed by the heating of a-H2O at 80–100 K and direct condensation at 120–140 K in protoplanetary disks. We also investigated candidates for other chiral ices using published data. We found that NH3 I and NH3·H2O I are chiral at low temperature and pressure conditions. If one-handed circularly polarized light is irradiated during the nucleation of these chiral ice crystals, homochiral crystals can be formed. These results have important implications for the origin of interstellar organic molecule homochirality

    Assessment of Outcome of Hepatic Arterial Infusion Chemotherapy in Patients with Advanced Hepatocellular Carcinoma by the Combination of RECIST and Tumor Markers

    Get PDF
    To assess the outcome of stable disease (SD) patients with advanced hepatocellular carcinoma (HCC) by tumor markers after the first course of hepatic arterial infusion chemotherapy (HAIC). The study subjects were 156 HCC patients treated with HAIC and classified as Child Pugh A, with no extrahepatic metastasis, and no history of sorafenib treatment. In the study and validation cohorts, the AFP and DCP ratios of patients who were considered SD to the first course of HAIC were analyzed by AUROC for a prediction of response to the second course of HAIC. The imaging response to the first course of HAIC was classified as partial response (PR), SD and progressive disease (PD) in 29 (18.8%), 80 (51.9%), and 44 (28.6%) patients respectively. For SD patients, the α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP) ratios of patients who were considered SD to the first course of HAIC were analyzed by the receiver operating characteristic curve for prediction of response to the second course of HAIC in the study cohorts. The area under the curve of AFP ratio was 0.743. The area under the curve of DCP ratio was 0.695. The cut-off values of AFP and DCP ratios were 1.3 and 1.0, respectively. In the validation cohort, the accuracy of the prediction of response in this validation cohort (71.4%) showed no significant difference compared to that in the study cohort (72.4%) (p = 1.0). The results suggested that patients with a high tumor marker ratio could be switched to alternative therapeutic regimens despite the SD response to HAIC
    corecore