31 research outputs found

    Structures and mechanisms of actin ATP hydrolysis

    Get PDF
    The major cytoskeleton protein actin undergoes cyclic transitions between the monomeric G-form and the filamentous F-form, which drive organelle transport and cell motility. This mechanical work is driven by the ATPase activity at the catalytic site in the F-form. For deeper understanding of the actin cellular functions, the reaction mechanism must be elucidated. Here, we show that a single actin molecule is trapped in the F-form by fragmin domain-1 binding and present their crystal structures in the ATP analog-, ADP-Pi-, and ADP-bound forms, at 1.15-Å resolutions. The G-to-F conformational transition shifts the side chains of Gln137 and His161, which relocate four water molecules including W1 (attacking water) and W2 (helping water) to facilitate the hydrolysis. By applying quantum mechanics/molecular mechanics calculations to the structures, we have revealed a consistent and comprehensive reaction path of ATP hydrolysis by the F-form actin. The reaction path consists of four steps: 1) W1 and W2 rotations; 2) PG–O3B bond cleavage; 3) four concomitant events: W1–PO3− formation, OH− and proton cleavage, nucleophilic attack by the OH− against PG, and the abstracted proton transfer; and 4) proton relocation that stabilizes the ADP-Pi–bound F-form actin. The mechanism explains the slow rate of ATP hydrolysis by actin and the irreversibility of the hydrolysis reaction. While the catalytic strategy of actin ATP hydrolysis is essentially the same as those of motor proteins like myosin, the process after the hydrolysis is distinct and discussed in terms of Pi release, F-form destabilization, and global conformational changes

    Real-Time Time-Frequency Two-Dimensional Imaging of Ultrafast Transient Signals in Solid-State Organic Materials

    Get PDF
    In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation

    Poster display II clinical general

    Get PDF

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Concurrent Activation of Acetylation and Tri-Methylation of H3K27 in a Subset of Hepatocellular Carcinoma with Aggressive Behavior

    No full text
    <div><p>Analysis of acetylation and tri-methylation of the same residue of histone molecules might identify a subset of hepatocellular carcinoma (HCC) with aggressive behavior. In the present study, we examined acetylation and tri-methylation of lysine 27 on histone H3 (H3K27ac and H3K27me3, respectively) because these two modifications are known to exhibit opposite effects (enhancing and silencing) on gene expression. Neoplastic and non-neoplastic tissues from 198 HCC cases were immunostained with specific monoclonal antibodies against H3K27ac and H3K27me3. The stained tissues were evaluated by an image analyzing program to generate histological scores (H-scores, range 0–300), which were determined by multiplying the percentage of positive-stained cells with the classified immunohistochemical marker intensity (0–3). HCC tissues showed significantly higher H3K27ac (156.7±86.8) and H3K27me3 H-scores (151.8±78.1) compared with the background liver (40.3±33.0 and 64.7±45.6, respectively) (both <i>P</i><0.001). The cases with H-scores of high-H3K27ac/high-H3K27me3 (n = 54) showed significant correlation with poor differentiation of morphology (<i>P</i><0.01) and p53-positive staining (<i>P</i><0.05), and poor prognosis (<i>P</i><0.01). Confocal microscopy revealed segregated intranuclear localization of both modifications in the individual cancer cells: H3K27ac localization in central euchromatin regions and H3K27me3 in peripheral heterochromatin regions. Concurrent acetylation and methylation at H3K27 occurs in HCC cells in association with p53 abnormalities. These findings demonstrate that image analyzer-assisted H-scores of H3K27ac and H3K27me3 identified an aggressive subgroup of HCC, and could serve as a prognostic marker for HCC.</p></div
    corecore