79 research outputs found

    Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Get PDF
    The Underground Coal Gasification (UCG) system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE) is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining

    Effect of Injection Flow Rate on Product Gas Quality in Underground Coal Gasification (UCG) Based on Laboratory Scale Experiment: Development of Co-Axial UCG System

    Get PDF
    Underground coal gasification (UCG) is a technique to recover coal energy without mining by converting coal into a valuable gas. Model UCG experiments on a laboratory scale were carried out under a low flow rate (6~12 L/min) and a high flow rate (15~30 L/min) with a constant oxygen concentration. During the experiments, the coal temperature was higher and the fracturing events were more active under the high flow rate. Additionally, the gasification efficiency, which means the conversion efficiency of the gasified coal to the product gas, was 71.22% in the low flow rate and 82.42% in the high flow rate. These results suggest that the energy recovery rate with the UCG process can be improved by the increase of the reaction temperature and the promotion of the gasification area

    Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system

    Get PDF
    In this study, to better simulate underground coal gasification (UCG), an artificial coal seam was constructed to use as a simulated underground gasifier, which comprised coal blocks excavated from the coal seam. This study reports the process and results of three independently designed experiments using coaxial-hole and linking-hole UCG models: (a) a coaxial model using a coaxial pipeline as a gasification channel, (b) a coaxial model using the coaxial pipeline combined with a bottom cross-hole, and (c) a linking-hole model using a horizontal V-shaped cross-hole. In the present work, the fracturing activities and cavity growth inside the reactor were monitored with acoustic emission (AE) technologies. During the process, the temperature profiles, gas production rate, and gas content were measured successively. The results show that AE activities monitored during UCG process are significantly affected by operational variables such as feed gas rate, feed gas content, and linking-hole types. Moreover, the amount of coal consumed during UCG process were estimated using both of the stoichiometric approach and balance computation of carbon (C) based on the product gas contents. A maximum error of less than 10% was observed in these methods, in which the gas leakage was also considered. This demonstrates that the estimated results using the proposed stoichiometric approach could be useful for evaluating energy recovery during UCG

    Emission characteristics of laser-induced plasma using collinear long and short dual-pulse LIBS

    Get PDF
    The collinear long and short dual-pulse LIBS (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under FR (free running) condition as an external energy source. Comparing the measurement results of stainless steel in air using SP-LIBS and DP-LIBS, the emission intensity was enhanced using DP-LIBS markedly. The temperature of plasma induced by DP-LIBS was maintained at higher temperature under different gate delay time and short pulse-width laser power conditions compared with these measured using SP-LIBS of short pulse width. Moreover, the variation rates of plasma temperature measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short pulse width and long pulse width. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method

    Improved Measurement Characteristics of Elemental Compositions Using Laser-Induced Breakdown Spectroscopy

    Get PDF
    Rapid detection of coal and fly ash is significant to improve the efficiency of thermal power plants and reduce environmental pollution. Given its fast response, high sensitivity, real-time, and noncontact features, laser-induced breakdown spectroscopy (LIBS) has a great potential for on-line measurement in these applications. The direct measurement of particles and gases using LIBS was studied, and the method was shown to be effective for this application

    Transcriptome Profiling of Lotus japonicus Roots During Arbuscular Mycorrhiza Development and Comparison with that of Nodulation

    Get PDF
    To better understand the molecular responses of plants to arbuscular mycorrhizal (AM) fungi, we analyzed the differential gene expression patterns of Lotus japonicus, a model legume, with the aid of a large-scale cDNA macroarray. Experiments were carried out considering the effects of contaminating microorganisms in the soil inoculants. When the colonization by AM fungi, i.e. Glomus mosseae and Gigaspora margarita, was well established, four cysteine protease genes were induced. In situ hybridization revealed that these cysteine protease genes were specifically expressed in arbuscule-containing inner cortical cells of AM roots. On the other hand, phenylpropanoid biosynthesis-related genes for phenylalanine ammonia-lyase (PAL), chalcone synthase, etc. were repressed in the later stage, although they were moderately up-regulated on the initial association with the AM fungus. Real-time RT–PCR experiments supported the array experiments. To further confirm the characteristic expression, a PAL promoter was fused with a reporter gene and introduced into L. japonicus, and then the transformants were grown with a commercial inoculum of G. mosseae. The reporter activity was augmented throughout the roots due to the presence of contaminating microorganisms in the inoculum. Interestingly, G. mosseae only colonized where the reporter activity was low. Comparison of the transcriptome profiles of AM roots and nitrogen-fixing root nodules formed with Mesorhizobium loti indicated that the PAL genes and other phenylpropanoid biosynthesis-related genes were similarly repressed in the two organs

    Risk-adjusted therapy for pediatric non-T cell ALL improves outcomes for standard risk patients: results of JACLS ALL-02

    Get PDF
    This study was a second multicenter trial on childhood ALL by the Japan Childhood Leukemia Study Group (JACLS) to improve outcomes in non-T ALL. Between April 2002 and March 2008, 1138 children with non-T ALL were enrolled in the JACLS ALL-02 trial. Patients were stratified into three groups using age, white blood cell count, unfavorable genetic abnormalities, and treatment response: standard risk (SR), high risk (HR), and extremely high risk (ER). Prophylactic cranial radiation therapy (PCRT) was abolished except for CNS leukemia. Four-year event-free survival (4yr-EFS) and 4-year overall survival (4yr-OS) rates for all patients were 85.4% ± 1.1% and 91.2% ± 0.9%, respectively. Risk-adjusted therapy resulted in 4yr-EFS rates of 90.4% ± 1.4% for SR, 84.9% ± 1.6% for HR, and 66.5% ± 4.0% for ER. Based on NCI risk classification, 4yr-EFS rates were 88.2% in NCI-SR and 76.4% in NCI-HR patients, respectively. Compared to previous trial ALL-97, 4yr-EFS of NCI-SR patients was significantly improved (88.2% vs 81.2%, log rank p = 0.0004). The 4-year cumulative incidence of isolated (0.9%) and total (1.5%) CNS relapse were significantly lower than those reported previously. In conclusion, improved EFS in NCI-SR patients and abolish of PCRT was achieved in ALL-02

    Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon

    Full text link
    A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba

    SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression

    Get PDF
    臓器チップ技術を用いて新型コロナウイルスが血管へ侵入するメカニズムを解明 --Claudin-5発現抑制による呼吸器の血管内皮バリア破壊--. 京都大学プレスリリース. 2022-09-22.A study using an organ-on-a-chip reveals a mechanism of SARS-CoV-2 invasion into blood vessels --Disruption of vascular endothelial barrier in respiratory organs by decreasing Claudin-5 expression--. 京都大学プレスリリース. 2022-09-27.In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin–mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2–induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2–induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19
    corecore