Emission characteristics of laser-induced plasma using collinear long and short dual-pulse LIBS

Abstract

The collinear long and short dual-pulse LIBS (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under FR (free running) condition as an external energy source. Comparing the measurement results of stainless steel in air using SP-LIBS and DP-LIBS, the emission intensity was enhanced using DP-LIBS markedly. The temperature of plasma induced by DP-LIBS was maintained at higher temperature under different gate delay time and short pulse-width laser power conditions compared with these measured using SP-LIBS of short pulse width. Moreover, the variation rates of plasma temperature measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short pulse width and long pulse width. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method

    Similar works