3,783 research outputs found

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Oct. 1 - Dec. 31, 1966

    Get PDF
    Interstitial compounds of transition elements prepared for improving oxygen electrode in alkaline hydrox fuel cel

    Interstitial compounds as fuel cell catalysts - Their preparative techniques and electrochemical testing

    Get PDF
    Preparation and electrochemical testing methods for fuel cell catalysts using interstitial compound

    CW and pulsed electrically detected magnetic resonance spectroscopy at 263 GHz/12 T on operating amorphous silicon solar cells

    Get PDF
    Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263 GHz and resonance fields between 0 and 12 T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5 K and 90 K was studied by in operando 263 GHz CW and pEDMR alongside with complementary X-band CW EDMR. Benefiting from the superior resolution at 263 GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5 K EDMR spectra were found to be dominated by conduction and valence band tale states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90 K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states.Comment: 8 pages, 4 figure

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Apr. 1 - Jun. 30, 1967

    Get PDF
    Preparation of institial compounds of transition metals for hydrogen oxygen fuel cell cathode

    Recent advances in arsenic trioxide encapsulated nanoparticlesas drug delivery agents to solid cancers

    Get PDF
    Since arsenic trioxide (ATO) was first approved as the front line therapy for acute promyelocytic leukemia (APL) 25 years ago, its anti-cancer properties for various malignancies have been under intense investigation. However, the clinical successes of ATO in treating hematological cancers have not been translated to solid cancers. This is due to arsenic’s rapid clearance by the body’s immune system before reaching the tumor site. Several attempts have henceforth been made to increase its bioavailability toward solid cancers without increasing its dosage albeit without much success. This review summarizes the past and current utilization of ATO in the medical field with primary focus on the implementation of nanotechnology for ATO delivery to solid cancer cells. Different approaches that have been employed to increase arsenic’s efficacy, specificity and bioavailability to solid cancer cells were evaluated and compared. The potential of combining different approaches or tailoring delivery vehicles to target specific types of solid cancers according to individual cancer characteristics and arsenic chemistry was proposed and discussed

    Basel II, External Ratings and Adverse Selection

    Get PDF
    This paper will describe and analyse the development of Basel II Capital Accord and will focus on the use of external ratings in the Standardized Approach in Basel II. Furthermore it will examine the problem of adverse selection which appears in Basel II as a result from the proposal for the use of external ratings in determining the risk weights in the standardized approach. The paper will also attempt to find possible solutions to the adverse selection problem by discussing two similar models, and derive implications from them.Basel II, external ratings, adverse selection, rating agencies, standardized approach

    Effective delivery of arsenic trioxide to HPV-positive cervical cancer cells using optimised liposomes: a size and charge study

    Get PDF
    Despite the success of arsenic trioxide (ATO) in treating haematological malignancies, its potential to treat solid tumours has not been fully exploited, owing to its dose-limiting toxicity and poor pharmacokinetics. In order to overcome this hurdle, liposomal encapsulation of the drug with different surface charges (neutral, negative, and positive) and sizes (100, 200 and 400 nm) were synthesised and tested on human papilloma virus (HPV)-positive HeLa and HPV-negative HT-3 cervical cancer cell lines. Two epithelial cell lines-human keratinocytes (HK) and human colon cells (CRL-1790)-were used as controls. The synthesised liposomes were tested for their physico-chemical characteristics, drug loading efficiency, and toxicity on the studied cell lines. Neutral liposomes of 100 nm in size were the chosen formulation for delivering ATO into the studied cells, as they showed the least intrinsic cytotoxicity and the highest loading efficiency. The findings demonstrated that the optimised formulation of liposomes was an effective drug delivery method for HPV-infected cervical cancer cells. Furthermore, the toxicity vs. uptake ratio was highest for HeLa cells, while a reduced or minimal toxic effect was observed for non-HPV-infected cervical cancer cells and control cells. These findings may provide a promising therapeutic strategy for effectively managing cervical cancers

    Optimisation of folate-mediated liposomal encapsulated arsenic trioxide for treating HPV-positive cervical cancer cells in vitro

    Get PDF
    High-risk human papilloma virus (HPV) infection is directly associated with cervical cancer development. Arsenic trioxide (ATO), despite inducing apoptosis in HPV-infected cervical cancer cells in vitro, has been compromised by toxicity and poor pharmacokinetics in clinical trials. Therefore, to improve ATO’s therapeutic profile for HPV-related cancers, this study aims to explore the effects of length of ligand spacers of folate-targeted liposomes on the efficiency of ATO delivery to HPV-infected cells. Fluorescent ATO encapsulated liposomes with folic acid (FA) conjugated to two different PEG lengths (2000 Da and 5000 Da) were synthesised, and their cellular uptake was examined for HPV-positive HeLa and KB and HPV-negative HT-3 cells using confocal microscopy, flow cytometry, and spectrophotometer readings. Cellular arsenic quantification and anti-tumour efficacy was evaluated through inductively coupled plasma-mass spectrometry (ICP-MS) and cytotoxicity studies, respectively. Results showed that liposomes with a longer folic acid-polyethylene glycol (FA-PEG) spacer (5000 Da) displayed a higher efficiency in targeting folate receptor (FR) + HPV-infected cells without increasing any inherent cytotoxicity. Targeted liposomally delivered ATO also displayed superior selectivity and efficiency in inducing higher cell apoptosis in HPV-positive cells per unit of arsenic taken up than free ATO, in contrast to HT-3. These findings may hold promise in improving the management of HPV-associated cancers

    PARTURIENT UDDER OEDEMA IN A DROMEDARY CAMEL (CAMELUS DROMEDARIUS)

    Get PDF
    A 10 year old female dromedary camel was examined two days after parturition for the treatment of udder swelling that started developing two days before parturition. The animal had normal body temperature. The swelling was soft and cold and involved udder only, while no teats were involved. A marked decrease in blood haemoglobin level was noted. The animals responded to treatment and recoved within three days
    • …
    corecore