104 research outputs found
Quantum field theoretic approach to neutrino oscillations in matter
We consider neutrino oscillations in non-uniform matter in a quantum field
theoretic (QFT) approach, in which neutrino production, propagation and
detection are considered as a single process. We find the conditions under
which the oscillation probability can be sensibly defined and demonstrate how
the properly normalized oscillation probability can be obtained in the QFT
framework. We derive the evolution equation for the oscillation amplitude and
discuss the conditions under which it reduces to the standard
Schr\"odinger-like evolution equation. It is shown that, contrary to the common
usage, the Schr\"odinger-like evolution equation is not applicable in certain
cases, such as oscillations of neutrinos produced in decays of free pions
provided that sterile neutrinos with eV exist.Comment: LaTeX, 24 pages + 16 pages of appendices, 1 figure. V2: typos
correcte
Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors
We explore the physics potential of multi-megaton scale ice or water
Cherenkov detectors with low ( GeV) threshold. Using some proposed
characteristics of the PINGU detector setup we compute the distributions of
events versus neutrino energy and zenith angle , and study
their dependence on yet unknown neutrino parameters. The
regions are identified where the distributions have the highest sensitivity to
the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the
maximal one and to the CP-phase. We evaluate significance of the measurements
of the neutrino parameters and explore dependence of this significance on the
accuracy of reconstruction of the neutrino energy and direction. The effect of
degeneracy of the parameters on the sensitivities is also discussed. We
estimate the characteristics of future detectors (energy and angle resolution,
volume, etc.) required for establishing the neutrino mass hierarchy with high
confidence level. We find that the hierarchy can be identified at --
level (depending on the reconstruction accuracies) after 5 years of
PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte
Neutrino oscillations: Quantum mechanics vs. quantum field theory
A consistent description of neutrino oscillations requires either the
quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT)
treatment. We compare these two approaches to neutrino oscillations and discuss
the correspondence between them. In particular, we derive expressions for the
QM neutrino wave packets from QFT and relate the free parameters of the QM
framework, in particular the effective momentum uncertainty of the neutrino
state, to the more fundamental parameters of the QFT approach. We include in
our discussion the possibilities that some of the neutrino's interaction
partners are not detected, that the neutrino is produced in the decay of an
unstable parent particle, and that the overlap of the wave packets of the
particles involved in the neutrino production (or detection) process is not
maximal. Finally, we demonstrate how the properly normalized oscillation
probabilities can be obtained in the QFT framework without an ad hoc
normalization procedure employed in the QM approach.Comment: LaTeX, 42 pages, 1 figure; v2: minor clarifications, matches
published version; v3: Corrected the discussion of the conditions under which
an oscillation probability can be sensibly defined in the QFT approach (sec.
5.2.4
Searching for sterile neutrinos in ice
Oscillation interpretation of the results from the LSND, MiniBooNE and some
other experiments requires existence of sterile neutrino with mass eV
and mixing with the active neutrinos . It has
been realized some time ago that existence of such a neutrino affects
significantly the fluxes of atmospheric neutrinos in the TeV range which can be
tested by the IceCube Neutrino Observatory. In view of the first IceCube data
release we have revisited the oscillations of high energy atmospheric neutrinos
in the presence of one sterile neutrino. Properties of the oscillation
probabilities are studied in details for various mixing schemes both
analytically and numerically. The energy spectra and angular distributions of
the events have been computed for the simplest mass, and
mixing schemes and confronted with the IceCube data. An
illustrative statistical analysis of the present data shows that in the
mass mixing case the sterile neutrinos with parameters required by
LSND/MiniBooNE can be excluded at about level. The
mixing scheme, however, can not be ruled out with currently available IceCube
data.Comment: 41 pages, 16 figures. Accepted for publication in JHEP. Minor changes
from the previous versio
Identifying the Neutrino mass Ordering with INO and NOvA
The relatively large value of established recently by the Daya
Bay reactor experiment opens the possibility to determine the neutrino mass
ordering with experiments currently under construction. We investigate
synergies between the NOvA long-baseline accelerator experiment with
atmospheric neutrino data from the India-based Neutrino Observatory (INO). We
identify the requirements on energy and direction reconstruction and detector
mass for INO necessary for a significant sensitivity. If neutrino energy and
direction reconstruction at the level of 10% and 10 degree can be achieved by
INO a determination of the neutrino mass ordering seems possible around 2020.Comment: 18 pages, 8 figures, minor improvements and clarifications, new panel
in fig. 7, version to appear in JHEP, typo in eq. 4 correcte
Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations
We propose a mechanism for baryogenesis from particle decays or annihilations that can work at the TeV scale. Some heavy particles annihilate or decay into a heavy sterile neutrino N (with M ≳ 0.5 TeV) and a ¿light¿ one ν (with m ≪ 100 GeV), generating an asymmetry among the two helicity degrees of freedom of ν. This asymmetry is partially transferred to Standard Model leptons via fast Yukawa interactions and reprocessed into a baryon asymmetry by the electroweak sphalerons. We illustrate this mechanism in a WIMPy baryogenesis model where the helicity asymmetry is generated in the annihilation of dark matter. This model connects the baryon asymmetry, dark matter, and neutrino masses. Moreover it also complements previous studies on general requirements for baryogenesis from dark matter annihilation. Finally we discuss other possible realizations of this helicitogenesis mechanism
Supersymmetric mass spectra and the seesaw type-I scale
We calculate supersymmetric mass spectra with cMSSM boundary conditions and a
type-I seesaw mechanism added to explain current neutrino data. Using
published, estimated errors on SUSY mass observables for a combined LHC+ILC
analysis, we perform a theoretical analysis to identify parameter
regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable
with LHC+ILC data. The most important observables are determined to be the
(left) smuon and selectron masses and the splitting between them, respectively.
Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter
space, but can be quite sizeable for large values of the seesaw scale,
. Thus, for very roughly GeV hints for type-I
seesaw might appear in SUSY mass measurements. Since our numerical results
depend sensitively on forecasted error bars, we discuss in some detail the
accuracies, which need to be achieved, before a realistic analysis searching
for signs of type-I seesaw in SUSY spectra can be carried out.Comment: 17 pages, 7 figure
Physics of Neutron Star Kicks
It is no longer necessary to `sell' the idea of pulsar kicks, the notion that
neutron stars receive a large velocity (a few hundred to a thousand km
s) at birth. However, the origin of the kicks remains mysterious. We
review the physics of different kick mechanisms, including hydrodynamically
driven, neutrino and magnetically driven kicks.Comment: 8 pages including 1 figure. To be published in "Stellar Astrophysics"
(Pacific Rim Conference Proceedings), (Kluwer Pub.
Two experiments for the price of one? -- The role of the second oscillation maximum in long baseline neutrino experiments
We investigate the quantitative impact that data from the second oscillation
maximum has on the performance of wide band beam neutrino oscillation
experiments. We present results for the physics sensitivities to standard three
flavor oscillation, as well as results for the sensitivity to non-standard
interactions. The quantitative study is performed using an experimental setup
similar to the Fermilab to DUSEL Long Baseline Neutrino Experiment (LBNE). We
find that, with the single exception of sensitivity to the mass hierarchy, the
second maximum plays only a marginal role due to the experimental difficulties
to obtain a statistically significant and sufficiently background-free event
sample at low energies. This conclusion is valid for both water Cherenkov and
liquid argon detectors. Moreover, we confirm that non-standard neutrino
interactions are very hard to distinguish experimentally from standard
three-flavor effects and can lead to a considerable loss of sensitivity to
\theta_{13}, the mass hierarchy and CP violation.Comment: RevTex 4.1, 23 pages, 10 figures; v2: Typos corrected, very minor
clarifications; matches published version; v3: Fixed a typo in the first
equation in sec. III
Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors
Large mass ice/water Cherenkov experiments, optimized to detect low energy
(1-20 GeV) atmospheric neutrinos, have the potential to discriminate between
normal and inverted neutrino mass hierarchies. The sensitivity depends on
several model and detector parameters, such as the neutrino flux profile and
normalization, the Earth density profile, the oscillation parameter
uncertainties, and the detector effective mass and resolution. A proper
evaluation of the mass hierarchy discrimination power requires a robust
statistical approach. In this work, the Toy Monte Carlo, based on an extended
unbinned likelihood ratio test statistic, was used. The effect of each model
and detector parameter, as well as the required detector exposure, was then
studied. While uncertainties on the Earth density and atmospheric neutrino flux
profiles were found to have a minor impact on the mass hierarchy
discrimination, the flux normalization, as well as some of the oscillation
parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP})
uncertainties and correlations resulted critical. Finally, the minimum required
detector exposure, the optimization of the low energy threshold, and the
detector resolutions were also investigated.Comment: 23 pages, 16 figure
- …