76 research outputs found

    Neurobiological pathways to childhood psychopathology : Population-based studies of cognition and behavior

    Get PDF
    In the past few decades, considerable advances have been made in understanding childhood psychopathology. This progress is the result of four primary developments in the field. First, both in the research and in the clinical framework, psychopathology has been conceptualized across a spectrum of severity of symptoms and impairment. Second, psychopathology has been studied in the context of young children’s real life parallel to referral settings. Third, studying child psychopathology in large-scale prospective epidemiological studies offers new insight into the etiology of child psychiatric disorders. And fourth, enormous progress has been made in understanding the nature of psychopathology and its biological underpinnings

    Gestational Age at Birth and Risk of Developmental Delay: The Upstate KIDS Study

    Get PDF
    Objective—To model the association between gestational age at birth and early child development through 3 years of age. Study Design—Development of 5868 children in Upstate KIDS (New York State; 2008–2014) was assessed at 7 time-points using the Ages and Stages Questionnaire (ASQ). The ASQ was implemented using gestational age corrected dates of birth at 4, 8, 12, 18, 24, 30, and 36 months. Whether children were eligible for developmental services from the Early Intervention Program (EIP) was determined through linkage. Gestational age was based on vital records. Statistical models adjusted for covariates including sociodemographic factors, maternal smoking and plurality. Results——Compared to gestational age of 39 weeks, adjusted odds ratios (aOR) and 95% confidence intervals of failing the ASQ for children delivered at \u3c 32, 32–34, 35–36, 37, 38, and 40 weeks gestational age were: 5.32 (3.42, 8.28), 2.43 (1.60, 3.69), 1.38 (1.00, 1.90), 1.37 (0.98, 1.90), 1.29 (0.99, 1.67), 0.73 (0.55, 0.96), and 0.51 (0.32, 0.82). Similar risks of being eligible for EIP services were observed (aOR: 4.19, 2.10, 1.29, 1.20, 1.01, 1.00 (ref), 0.92, 0.78, respectively for \u3c 32, 32–34, 37, 38, 39 (ref), 40, 41 weeks). Conclusion—Gestational age was inversely associated with developmental delays for all gestational ages. Evidence from our study is potentially informative for low-risk deliveries at 39 weeks but it is notable that deliveries at 40 weeks exhibited further lower risk

    Maternal urinary iodine concentration in pregnancy and children's cognition: Results from a population-based birth cohort in an iodine-sufficient area

    Get PDF
    OBJECTIVE: Reports from populations with an insufficient iodine intake suggest that children of mothers with mild iodine deficiency during pregnancy are at risk for cognitive impairments. However, it is unknown whether, even in iodine-sufficient areas, low levels of iodine intake occur that influence cognitive development in the offspring. This study investigated the association between maternal low urinary iodine concentration (UIC) in pregnancy and children's cognition in a population-based sample from a country with an optimal iodine status (the Netherlands). SETTING AND PARTICIPANTS: In 1525 mother–child pairs in a Dutch multiethnic birth cohort, we investigated the relation between maternal UIC<150 μg/g creatinine, assessed <18 weeks gestation and children's cognition. OUTCOMES MEASURES: Non-verbal IQ and language comprehension were assessed during a visit to the research centre using Dutch test batteries when the children were 6 years. RESULTS: In total, 188 (12.3%) pregnant women had UIC<150 μg/g creatinine, with a median UIC equal to 119.3 μg/g creatinine. The median UIC in the group with UIC>150 μg/g creatinine was 322.9 μg/g and in the whole sample 296.5 μg/g creatinine. There was a univariate association between maternal low UIC and children's suboptimum non-verbal IQ (unadjusted OR=1.44, 95% CI 1.02 to 2.02). However, after adjustment for confounders, maternal low UIC was not associated with children's non-verbal IQ (adjusted OR=1.33, 95% CI 0.92 to 1.93). There was no relation between maternal UIC in early pregnancy and children's language comprehension at 6 years. CONCLUSIONS: The lack of a clear association between maternal low UIC and children's cognition probably reflects that low levels of iodine were not frequent and severe enough to affect neurodevelopment. This may result from the Dutch iodine fortification policy, which allows iodised salt to be added to almost all processed food and emphasises the monitoring of iodine intake in the population

    A Review on Research and Task in Support Methods to making 'Ibasho'

    Get PDF
    Severe maternal thyroid dysfunction during pregnancy affects fetal brain growth and corticogenesis. This study focused on the effect of maternal hypothyroxinemia during early pregnancy on growth of the fetal and infant head. In a population-based birth cohort, we assessed thyroid status in early pregnancy (median 13.4, 90% range 10.8-17.2), in 4894 women, and measured the prenatal and postnatal head size of their children at 5 time points. Hypothyroxinemia was defined as normal thyroid-stimulating hormone levels and free thyroxine-4 concentrations below the 10th percentile. Statistical analysis was performed using linear generalized estimating equation. Maternal hypothyroxinemia was associated with larger fetal and infant head size (overall estimate β: 1.38, 95% confidence interval 0.56; 2.19, P =.001). In conclusion, in the general population, even small variations in maternal thyroid function during pregnancy may affect the developing head of the young child

    Association of gestational maternal hypothyroxinemia and increased autism risk

    Get PDF
    Objective Transient gestational hypothyroxinemia in rodents induces cortical neuronal migration brain lesions resembling those of autism. We investigated the association between maternal hypothyroxinemia (gestational weeks 6-18) and autistic symptoms in children. Methods The mother-and-child cohort of the Generation R Study (Rotterdam, the Netherlands) began prenatal enrollment between 2002 and 2006. At a mean gestational age of 13.4 weeks (standard deviation = 1.9, range = 5.9-17.9), maternal thyroid function tests (serum thyrotropin [TSH], free thyroxine [fT4], and thyroid peroxidase [TPO] antibodies) were assessed in 5,100 women. We defined severe maternal hypothyroxinemia as fT4 98th percentile and SRS score in the top 5% of the sample (n = 81, 2.0%). Results Severe maternal hypothyroxinemia (n = 136) was associated with an almost 4-fold increase in the odds of having a probable autistic child (adjusted odds ratio = 3.89, 95% confidence interval [CI] = 1.83-8.20, p < 0.001). Using PDP scores, children of mothers with severe hypothyroxinemia had higher scores of autistic symptoms by age 6 years (adjusted B = 0.23, 95% CI = 0.03-0.37); SRS results were similar. No risk was found for children of TPO-antibody-positive mothers (n = 308). Interpretation We found a consistent association between severe, early gestation maternal hypothyroxinemia and autistic symptoms in offspring. Findings are concordant with epidemiological, biological, and experimental data on autism. Although these findings cannot establish causality, they open the possibility of preventive interventions

    Polygenic Risk Scores for Developmental Disorders, Neuromotor Functioning During Infancy, and Autistic Traits in Childhood

    Get PDF
    Background: Impaired neuromotor development is often one of the earliest observations in children with autism spectrum disorder (ASD). We investigated whether a genetic predisposition to developmental disorders was associated with nonoptimal neuromotor development during infancy and examined the genetic correlation between nonoptimal neuromotor development and autistic traits in the general population. Methods: In a population-based cohort in The Netherlands (2002–2006), we calculated polygenic risk scores (PRSs) for ASD and attention-deficit/hyperactivity disorder (ADHD) using genome-wide association study summary statistics. In 1921 children with genetic data, parents rated autistic traits at 6 years of age. Among them, 1174 children (61.1%) underwent neuromotor examinations (tone, responses, senses, and other observations) during infancy (9–20 weeks of age). We used linear regressions to examine associations of PRSs with neuromotor scores and autistic traits. We performed a bivariate genome-based restricted maximum likelihood analysis to explore whether genetic susceptibility underlies the association between neuromotor development and autistic traits. Results: Higher PRSs for ASD were associated with less optimal overall infant neuromotor development, in particular low muscle tone. Higher PRSs for ADHD were associated with less optimal senses. PRSs for ASD and those for ADHD both were associated with autistic traits. The single nucleotide polymorphism–based heritability of overall motor development was 20% (SE = .21) and of autistic traits was 68% (SE = .26). The genetic correlation between overall motor development and autistic traits was .35 (SE = .21, p < .001). Conclusions: We found that genetic liabilities for ASD and ADHD covary with neuromotor development during infancy. Shared genetic liability might partly explain the association between nonoptimal neuromotor development during infancy and autistic traits in childhood

    Air Pollution Exposure during Pregnancy and Childhood Autistic Traits in Four European Population-Based Cohort Studies: The ESCAPE Project

    Get PDF
    Background: Prenatal exposure to air pollutants has been suggested as a possible etiologic factor for the occurrence of autism spectrum disorder. Objectives: We aimed to assess whether prenatal air pollution exposure is associated with childhood autistic traits in the general population. Methods: Ours was a collaborative study of four European population-based birth/child cohorts—CATSS (Sweden), Generation R (the Netherlands), GASPII (Italy), and INMA (Spain). Nitrogen oxides (NO2, NOx) and particulate matter (PM) with diameters of ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and between 2.5 and 10 μm (PMcoarse), and PM2.5 absorbance were estimated for birth addresses by land-use regression models based on monitoring campaigns performed between 2008 and 2011. Levels were extrapolated back in time to exact pregnancy periods. We quantitatively assessed autistic traits when the child was between 4 and 10 years of age. Children were classified with autistic traits within the borderline/clinical range and within the clinical range using validated cut-offs. Adjusted cohort-specific effect estimates were combined using random-effects meta-analysis. Results: A total of 8,079 children were included. Prenatal air pollution exposure was not associated with autistic traits within the borderline/clinical range (odds ratio = 0.94; 95% CI: 0.81, 1.10 per each 10-μg/m3 increase in NO2 pregnancy levels). Similar results were observed in the different cohorts, for the other pollutants, and in assessments of children with autistic traits within the clinical range or children with autistic traits as a quantitative score. Conclusions: Prenatal exposure to NO2 and PM was not associated with autistic traits in children from 4 to 10 years of age in four European population-based birth/child cohort studies.Funding was provided as follows: ESCAPE Project— European Community’s Seventh Framework Program (FP7/2007-2011-GA#211250). CATSS, Sweden— Swedish Research Council for Health, Working Life and Welfare (FORTE), Swedish Research Council (VR) Formas, in partner hip with FORTE and VINNOVA (cross-disciplinary research program concerning children’s and young people’s mental health); VR through the Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM) framework grant 340-2013-5867; HKH Kronprinsessan Lovisas förening för barnasjukvård; and the Strategic Research Program in Epidemiology at Karolinska Institutet. Generation R, the Netherlands—The Generation R Study is conducted by the Erasmus University Medical Center in close collaboration with the School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam; the Municipal Health Service Rotterdam area, Rotterdam; the Rotterdam Homecare foundation, Rotterdam; and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. The general design of the Generation R Study is made possible by financial support from the Erasmus University Medical Center, Rotterdam; the Erasmus University Rotterdam; the Netherlands Organization for Health Research and Development (ZonMw); the Netherlands Organization for Scientific Research (NWO); and the Ministry of Health, Welfare and Sport. The Netherlands Organisation for Applied Scientific Research (TNO) received funding from the Netherlands Ministry of Infrastructure and the Environment to support exposure assessment. GASPII, Italy—grant from the Italian Ministry of Health (ex art.12, 2001). INMA, Spain— grants from Instituto de Salud Carlos III (Red INMA G03/176 and CB06/02/0041 FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 05/1079, 05/1052, 06/1213, 07/0314, 09/02647, 11/01007, 11/02591, CP11/00178, FIS-PI041436, FIS-PI081151, FIS-PI06/0867, FIS-PS09/00090), PI13/1944, PI13_02032, PI14/0891, PI14/1687, MS13/00054, UE (FP7-ENV-2011 cod 282957, and HEALTH.2010.2.4.5-1); Generalitat de Catalunya-CIRIT 1999SGR 00241; La Fundació La Marató de TV3 (090430); Conselleria de Sanitat Generalitat Valenciana; Department of Health of the Basque Government (2005111093 and 2009111069); and Provincial Government of Gipuzkoa (DFG06/004 and DFG08/001). V.W.V.J. received an additional grant from the Netherlands Organization for Health Research and Development (ZonMw 90700303, 916.10159). A.G.’s work was supported by a research grant from the European Community’s 7th Framework Programme (FP7/2008–2013-GA#212652). A full roster of the INMA project investigators can be found online (http://www. proyectoinma.org/presentacion-inma/listado-investigadores/ en_listado-investigadores.html)

    Low Urinary Iodine Excretion during Early Pregnancy Is Associated with Alterations in Executive Functioning in Children 1-3

    Get PDF
    Abstract The rare but deleterious effects of severe iodine deficiency during pregnancy on cognitive functioning of children are well known. Reports on possible associations between mild-to-moderate maternal iodine deficiency and child development, however, are scarce. In a population-based cohort we examined the association between maternal urinary iodine during early pregnancy and executive functioning in children at 4 y of age. In addition, we investigated the modification of this association by maternal diet and thyroid function. During pregnancy, we measured urinary iodine and thyroid hormone concentrations in associated with higher urinary iodine. Thus, low maternal urinary iodine during pregnancy is associated with impaired executive functioning in children. Because these symptoms were subclinical and occurred at an early age, future studies are needed to show whether these children are more vulnerable to develop later clinical disorders
    corecore