30 research outputs found

    Approach to SARS-CoV-2 Vaccination in Patients With Multiple Sclerosis

    Get PDF
    For more than a year now, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been causing the coronavirus disease (COVID-19) pandemic with high mortality and detrimental effects on society, economy, and individual lives. Great hopes are being placed on vaccination as one of the most potent escape strategies from the pandemic and multiple vaccines are already in clinical use. However, there is still a lot of insecurity about the safety and efficacy of vaccines in patients with autoimmune diseases like multiple sclerosis (MS), especially under treatment with immunomodulatory or immunosuppressive drugs. We propose strategic approaches to SARS-CoV-2 vaccination management in MS patients and encourage fellow physicians to measure the immune response in their patients. Notably, both humoral and cellular responses should be considered since the immunological equivalent for protection from SARS-CoV-2 after infection or vaccination still remains undefined and will most likely involve antiviral cellular immunity. It is important to gain insights into the vaccine response of immunocompromised patients in order to be able to deduce sensible strategies for vaccination in the future

    Case report: Variant-specific pre-exposure prophylaxis of SARS-CoV-2 infection in multiple sclerosis patients lacking vaccination responses

    Get PDF
    Sphingosine-1-phosphate receptor modulators and anti-CD20 treatment are widely used disease-modifying treatments for multiple sclerosis. Unfortunately, they may impair the patient’s ability to mount sufficient humoral and T-cellular responses to vaccination, which is of special relevance in the context of the SARS-CoV-2 pandemic. We present here a case series of six multiple sclerosis patients on treatment with sphingosine-1-phosphate receptor modulators who failed to develop SARS-CoV-2-specific antibodies and T-cells after three doses of vaccination. Due to their ongoing immunotherapy, lacking vaccination response, and additional risk factors, we offered them pre-exposure prophylactic treatment with monoclonal SARS-CoV-2-neutralizing antibodies. Initially, treatment was conducted with the antibody cocktail casirivimab/imdevimab. When the SARS-CoV-2 Omicron variant became predominant, we switched treatment to monoclonal antibody sotrovimab due to its sustained neutralizing ability also against the Omicron strain. Since sotrovimab was approved only for the treatment of COVID-19 infection and not for pre-exposure prophylaxis, we switched treatment to tixagevimab/cilgavimab as soon as it was granted marketing authorization in the European Union. This antibody cocktail has retained, albeit reduced, neutralizing activity against the Omicron variant and is approved for pre-exposure prophylaxis. No severe adverse events were recorded for our patients. One patient had a positive RT-PCR for SARS-CoV-2 under treatment with sotrovimab, but was asymptomatic. The other five patients did not develop symptoms of an upper respiratory tract infection or evidence of a SARS-CoV-2 infection during the time of treatment up until the finalization of this report. SARS-CoV-2-neutralizing antibody treatment should be considered individually for multiple sclerosis patients lacking adequate vaccination responses on account of their immunomodulatory treatment, especially in times of high incidences of SARS-CoV-2 infection

    Real World Lab Data: Patterns of Lymphocyte Counts in Fingolimod Treated Patients

    Get PDF
    Objective:Fingolimod is approved for the treatment of highly active relapsing remitting multiple sclerosis (MS) patients and acts by its unique mechanism of action via sphingosine-1-phosphate receptor-modulation. Although fingolimod-associated lymphopenia is a well-known phenomenon, the exact cause for the intra- and inter-individual differences of the fluctuation of lymphocyte count and its subtypes is still subject of debate. In this analysis, we aim to estimate the significance of the individual variation of distinct lymphocyte subsets for differences in absolute lymphocyte decrease in fingolimod treated patients and discuss how different lymphocyte subset patterns are related to clinical presentation in a long-term real life setting.Methods/Design:One hundred and thirteen patients with MS were characterized by complete blood cell count and immune cell phentopying of peripheral lymphocyte subsets before, at month 1 and every 3 months up to 36 months of fingolimod treatment. In addition, patients were monitored regarding clinical parameters (relapses, disability, MRI).Results:There was no significant association of baseline lymphocyte count and lymphocyte subtypes with lymphocyte decrease after fingolimod start. The initial drop of the absolute lymphocyte count could not predict the level of lymphocyte count during steady state on fingolimod. Variable CD8+ T cell and NK cell counts account for the remarkable intra- and inter-individual differences regarding initial drop and steady state level of lymphocyte count during fingolimod treatment, whereas CD4+ T cells and B cells mostly present a quite uniform decrease in all treated patients. Selected patients with lymphocyte count >1.0 GPT/l differed by higher CD8+ T cells and NK cell counts compared to lymphopenic patients but presented comparable clinical effectiveness during treatment.Conclusion:Monitoring of the absolute lymphocyte count at steady state seems to be a rough estimate of fingolimod induced lymphocyte redistribution. Our results suggest, that evaluation of distinct lymphocyte subsets as CD4+ T cells allow a more detailed evaluation to weigh and interpret degree of lymphopenia and treatment response in fingolimod treated patients

    Real-world evidence on siponimod treatment in patients with secondary progressive multiple sclerosis

    Get PDF
    BACKGROUND: Therapeutic options targeting inflammation in multiple sclerosis (MS) have evolved rapidly for relapsing–remitting MS, whereas few therapies are available for progressive forms of MS, in particular secondary progressive MS (SPMS). The approval of siponimod for SPMS has allowed for optimism in the otherwise discouraging therapeutic landscape. METHODS: We conducted a retrospective, multicenter, non-interventional study analyzing the efficacy and safety of siponimod under real-world conditions in 227 SPMS patients. According to the retrospective study framework, data was acquired at prespecified time points. Clinical readouts were assessed every three months. Disease progression was determined as increase in expanded disability status scale (EDSS), radiological progression, or the occurrence of new relapses under treatment. For safety analyses, adverse events (AE) and reasons for discontinuation were documented. The collected data points were analyzed at baseline and after 6, 12 and 18 months. However, data were predominately collected at the 6- and 12-month time points as many patients were lost to follow-up. In a group consisting of 41 patients, a more detailed investigation regarding disease progression was conducted, including data from measurement of cognitive and motoric functions. RESULTS: Under siponimod therapy, 64.8% of patients experienced sustained clinical disease stability at 12 months. Out of the stable patients 21.4% of patients improved. Of the remaining patients, 31.5% experienced EDSS progression, 3.7% worsened without meeting the threshold for progression. Relapses occurred in 7.4%. Radiological disease activity was detected in 24.1% of patients after six months of treatment and in 29.6% of patients at 12 months follow-up. The in-depth cohort consisting of 41 patients demonstrated no substantial changes in cognitive abilities measured by Paced Auditory Serial Addition Test and Symbol Digit Modalities Test or motoric functions measured with Timed 25-Foot Walk, 100-m timed test, and 9-Hole Peg Test throughout the 12-month study period. Radiological assessment showed a stable volume of white and grey matter, as well as a stable lesion count at 12 months follow-up. AE were observed in nearly half of the included patients, with lymphopenia being the most common. Due to disease progression or AE, 31.2% of patients discontinued therapy. CONCLUSION: Treatment with siponimod had an overall stabilizing effect regarding clinical and radiological outcome measures. However, there is a need for more intensive treatment management and monitoring to identify disease progression and AE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42466-022-00219-3

    S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: a narrative review

    No full text
    Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators have a complex mechanism of action, which are among the most efficient therapeutic options in multiple sclerosis (MS) and represent a promising approach for other immune-mediated diseases. The S1P signaling pathway involves the activation of five extracellular S1PR subtypes (S1PR1–S1PR5) that are ubiquitous and have a wide range of effects. Besides the immunomodulatory beneficial outcome in MS, S1P signaling regulates the cardiovascular function via S1PR1–S1PR3 subtypes, which reside on cardiac myocytes, endothelial, and vascular smooth muscle cells. In our review, we describe the mechanisms and clinical effects of S1PR modulators on the cardiovascular system. In the past, mostly short-term effects of S1PR modulators on the cardiovascular system have been studied, while data on long-term effects still need to be investigated. Immediate effects detected after treatment initiation are due to parasympathetic overactivation. In contrast, long-term effects may arise from a shift of the autonomic regulation toward sympathetic predominance along with S1PR1 downregulation. A mild increase in blood pressure has been reported in long-term studies, as well as decreased baroreflex sensitivity. In most studies, sustained hypertension was found to represent a significant adverse event related to treatment. The shift in the autonomic control and blood pressure values could not be just a consequence of disease progression but also related to S1PR modulation. Reduced cardiac autonomic activation and decreased heart rate variability during the long-term treatment with S1PR modulators may increase the risk for subsequent cardiac events. For second-generation S1PR modulators, this observation has to be confirmed in further studies with longer follow-ups. The periodic surveillance of cardiovascular function and detection of any cardiac autonomic dysfunction can help predict cardiac outcomes not only after the first dose but also throughout treatment

    Daily Practice Managing Resistant Multiple Sclerosis Spasticity With Delta-9-Tetrahydrocannabinol: Cannabidiol Oromucosal Spray: A Systematic Review of Observational Studies

    No full text
    Background/purpose: Spasticity is one of the most common symptoms in people with multiple sclerosis (MS). Conventional anti-spasticity agents have limitations in their efficacy and tolerability. Delta-9-tetrahydrocannabinol: cannabidiol (THC:CBD) spray, a cannabinoid-based medicine, is approved as an add-on therapy for MS spasticity not adequately controlled by other anti-spasticity medications. The results from randomized controlled trials (RCTs) have demonstrated a reduction in the severity of spasticity and associated symptoms. However, RCTs do not always reflect real-life outcomes. We systematically reviewed the complementary evidence from non-interventional real-world studies. Methods: A systematic literature review was conducted to identify all non-RCT publications on THC:CBD spray between 2011 and 2017. Data on study design, patient characteristics, effectiveness, and safety outcomes were extracted from those publications meeting our inclusion criteria. Results: In total, we reviewed 14 real-world publications including observational studies and treatment registries. The proportion of patients reaching the threshold of minimal clinical important difference (MCID), with at least a 20% reduction of the spasticity Numeric Rating Scale (NRS) score after 4 weeks ranged from 41.9% to 82.9%. The reduction in the mean NRS spasticity score after 4 weeks was maintained over 6-12 months. The average daily dose was five to six sprays. Delta-9-tetrahydrocannabinol: cannabidiol was well tolerated in the evaluated studies in the same way as in the RCTs. No new or unexpected adverse events or safety signals were reported in everyday clinical practice. Conclusions: The data evaluated in this systematic review provide evidence for the efficacy and safety of THC:CBD in clinical practice and confirm results obtained in RCTs

    Ella versus Simoa Serum Neurofilament Assessment to Monitor Treatment Response in Highly Active Multiple Sclerosis Patients

    No full text
    The measurement of serum neurofilament light chain (sNfL) is of growing importance in the field of neurology. In the management of multiple sclerosis, it can serve as a useful marker to assess disease activity and treatment response. This paper compares two available methods, namely the Single Molecule Array (Simoa) and the Ella microfluid platform, to measure longitudinal sNfL levels of 42 highly active multiple sclerosis patients treated with alemtuzumab over a period of 36 months. In order to assess the methods agreement, Bland–Altman plots and Passing–Bablok regression were analyzed. Here, we show that despite the fact that Ella measures around 24% higher values than Simoa, both are equally suitable for longitudinal sNfL monitoring

    Rescue therapy with alemtuzumab in B cell/antibody-mediated multiple sclerosis

    Get PDF
    Alemtuzumab exerts its clinical efficacy by its specific pattern of depletion and repopulation of different immune cell subsets. Recently, single cases of multiple sclerosis patients who developed severe exacerbation after the first alemtuzumab application, accompanied by re-appearance of peripheral B cells, were reported. Here we present a case with underlying B cell-driven multiple sclerosis that impressively improves after alemtuzumab, although peripheral B cell repopulation took place. Our detailed clinical, histopathological, imaging and immunological data suggest that alemtuzumab can act as an effective rescue treatment in highly active B cell-driven and antibody/complement-mediated multiple sclerosis type II patients
    corecore