64 research outputs found

    Signal pathways underlying homocysteine-induced production of MCP-1 and IL-8 in cultured human whole blood

    Full text link
    Aim : To elucidate the mechanisms underlying homocysteine (Hcy)-induced chemokine production. Methods : Human whole blood was pretreated with inhibitors of calmodulin (CaM), protein kinase C (PKC), protein tyrosine kinase (PTK), mitogen-activated protein kinase (MAPK), and NF-ΚB and activators of PPARΓ for 60 min followed by incubation with Hcy 100 Μmol/L for 32 h. The levels of mitogen chemokine protein (MCP)-1 and interleukin-8 (IL-8) were determined by enzyme-linked immunosorbant assay (ELISA). Results : Inhibitors of PKC (calphostin C, 50-500 nmol/L and RO-31-8220, 10–100 nmol/L), CaM (W7, 28–280 Μmol/L), ERK1/2 MAPK (PD 98059, 2–20 Μmol/L), p38 MAPK (SB 203580, 0.6–6 Μmol/L), JNK MAPK (curcumin, 2–10 Μmol/L), and NF-ΚB (PDTC, 10-100 nmol/L) markedly reduced Hcy 100 Μmol/L-induced production of MCP-1 and IL-8 in human cultured whole blood, but the inhibitors of PTK (genistein, 2.6–26 Μmol/L and tyrphostin, 0.5-5 Μmol/L) had no obvious effect on MCP-1 and IL-8 production. PPARΓ activators (ciglitazone 30 Μmol/L and troglitazone 10 Μmol/L) depressed the Hcy-induced MCP-1 production but not IL-8 production in the cultured whole blood. Conclusion : Hcy-induced MCP-1 and IL-8 production is mediated by activated signaling pathways such as PKC, CaM, MAPK, and NF-ΚB. Our results not only provide clues for the signal transduction pathways mediating Hcy-induced chemokine production, but also offer a plausible explanation for a pathogenic role of hyperhomocysteinemia in these diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75644/1/j.1745-7254.2005.00005.x.pd

    Vitronectin Increases Vascular Permeability by Promoting VE-Cadherin Internalization at Cell Junctions

    Get PDF
    Cross-talk between integrins and cadherins regulates cell function. We tested the hypothesis that vitronectin (VN), a multi-functional adhesion molecule present in the extracellular matrix and plasma, regulates vascular permeability via effects on VE-cadherin, a critical regulator of endothelial cell (EC) adhesion.Addition of multimeric VN (mult VN) significantly increased VE-cadherin internalization in human umbilical vein EC (HUVEC) monolayers. This effect was blocked by the anti-α(V)β(3) antibody, pharmacological inhibition and knockdown of Src kinase. In contrast to mult VN, monomeric VN did not trigger VE-cadherin internalization. In a modified Miles assay, VN deficiency impaired vascular endothelial growth factor-induced permeability. Furthermore, ischemia-induced enhancement of vascular permeability, expressed as the ratio of FITC-dextran leakage from the circulation into the ischemic and non-ischemic hindlimb muscle, was significantly greater in the WT mice than in the Vn(-/-) mice. Similarly, ischemia-mediated macrophage infiltration was significantly reduced in the Vn(-/-) mice vs. the WT controls. We evaluated changes in the multimerization of VN in ischemic tissue in a mouse hindlimb ischemia model. VN plays a previously unrecognized role in regulating endothelial permeability via conformational- and integrin-dependent effects on VE-cadherin trafficking.These results have important implications for the regulation of endothelial function and angiogenesis by VN under normal and pathological conditions

    Explorative visual analytics on interval-based genomic data and their metadata

    Get PDF
    Background: With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. Results: This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. Conclusions: GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSEunder GPLv3 open-source license

    A Role for the Retinoblastoma Protein As a Regulator of Mouse Osteoblast Cell Adhesion: Implications for Osteogenesis and Osteosarcoma Formation

    Get PDF
    The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    Bolus administration of obestatin does not change glucose and insulin levels neither in the systemic nor in the portal circulation of the rat

    No full text
    Obestatin is a second peptide derived from the preproghrelin polypeptide. it was originally thought to have anorexigenic effects, thereby functioning as an antagonist of ghrelin. However, this has been a subject of debate ever since. Since acylated ghrelin strongly induces insulin resistance, it could be hypothesized that obestatin plays a role in glucose homeostasis as well. In the present study we evaluated the effect of obestatin on glucose and insulin metabolism in the systemic and portal circulation. Obestatin 200 nmol/kg was administered systemically as a single intravenous bolus injection to fasted pentobarbital anesthetized adult male Wistar rats. Up to 50 min after administration, blood samples were taken to measure glucose and insulin concentrations, both in the portal and in the systemic circulation. The effect of obestatin was evaluated in fasted and in glucose-stimulated conditions (IVGTT) and compared to control groups treated with saline or IVGTT, respectively. Intravenous administration of obestatin did not have any effect on glucose and insulin concentrations, neither systemic nor portal, when compared to the control groups. Only the glucose peak 1 min after administration of IVGTT was slightly higher in the obestatin treated rats: 605.8 +/- 106.3% vs. 522.2 +/- 47.1% in the portal circulation, respectively (NS), and 800.7 +/- 78.7% vs. 549.6 +/- 37.0% in the systemic circulation, respectively (P < 0.02), but it can be debated whether this has any clinical relevance. In the present study, we demonstrated that intravenously administered obestatin does not influence glucose and insulin concentrations, neither in the portal nor in the systemic circulation. (c) 2008 Elsevier Inc. All rights reserved
    • …
    corecore