143 research outputs found

    Laser treatment in diabetic retinopathy

    Get PDF
    Diabetic retinopathy is a leading cause of visual impairment and blindness in developed countries due to macular edema and proliferative diabetic retinopathy (PDR). For both complications laser treatment may offer proven therapy: the Diabetic Retinopathy Study demonstrated that panretinal scatter photocoagulation reduces the risk of severe visual loss by >= 50% in eyes with high-risk characteristics. Pan-retinal scatter coagulation may also be beneficial in other PDR and severe nonproliferative diabetic retinopathy (NPDR) under certain conditions. For clinically significant macular edema the Early Treatment of Diabetic Retinopathy Study could show that immediate focal laser photocoagulation reduces the risk of moderate visual loss by at least 50%. When and how to perform laser treatment is described in detail, offering a proven treatment for many problems associated with diabetic retinopathy based on a high evidence level. Copyright (c) 2007 S. Karger AG, Basel

    Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the efficacy of the intravitreal (IVT) injection of Triamcinolone Acetonide (TA) as compared to posterior subtenon (SBT) capsule injection for the treatment of cystoid diabetic macular edema.</p> <p>Methods</p> <p>Fourteen patients with type II diabetes mellitus and on insulin treatment, presenting diffuse cystoid macular edema were recruited. Before TA injection all focal lakes were treated by laser photocoagulation. In the same patients one eye was assigned to 4 mg IVT injection of TA and the fellow eye was then treated with 40 mg SBT injection of TA. Before and one, three and six months after treatment we measured visual acuity with ETDRS chart as well as thickness of the macula with optical coherence tomography (OCT) and intraocular pressure (IOP).</p> <p>Results</p> <p>The eyes treated with an IVT injection displayed significant improvement in visual acuity, both after one (0.491 ± 0.070; p < 0.001) and three months (0.500 ± 0.089; p < 0.001) of treatment. Significant improvement was displayed also in eyes treated with an SBT injection, again after one (0.455 ± 0.069; p < 0.001) and three months (0.427 ± 0.065; p < 0.001). The difference between an IVT injection (0.809 ± 0.083) and SBT injection (0.460 ± 0.072) becomes significant six months after the treatment (p < 0.001).</p> <p>Macular thickness of the eyes treated with IVT injection was significantly reduced both after one (222.7 ± 13.4 μm; p < 0.001) and after three months (228.1 ± 10.6 μm; p < 0.001) of treatment. The eyes treated with SBT injection displayed significant improvement after one (220.1 ± 15.1 μm; p < 0.001) and after three months (231.3 ± 10.9 μm; p < 0.001). The difference between the eyes treated with IVT injection (385.2 ± 11.3 μm) and those treated with SBT injection (235.4 ± 8.7 μm) becomes significant six months after the treatment (p < 0.001).</p> <p>Intraocular pressure of the eyes treated with IVT injection significantly increased after one month (17.7 ± 1.1 mm/Hg; p < 0.020), three (18.2 ± 1.2 mm/Hg; p < 0.003) and six month (18.1 ± 1.3 mm/Hg; p < 0.007) when compared to baseline value (16.1 ± 1.402 mm/Hg). In the SBT injection eyes we didn't display a significant increase of intraocular pressure after one (16.4 ± 1.2 mm/Hg; p < 0.450), three (16.3 ± 1.1 mm/Hg; p < 0.630) and six months (16.2 ± 1.1 mm/Hg; p < 0.720) when compared to baseline value (16.2 ± 1.3 mm/Hg).</p> <p>Conclusion</p> <p>The parabulbar subtenon approach can be considered a valid alternative to the intravitreal injection.</p> <p>Trial registration</p> <p>Current Controlled Trials <b>ISRCTN67086909</b></p

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Corticosteroids in ophthalmology : drug delivery innovations, pharmacology, clinical applications, and future perspectives

    Get PDF

    Reply

    No full text
    [No abstract available

    Bone metabolism and new targets for intervention

    No full text
    Bone metastasis is a common complication of prostate cancer and is associated with significant morbidity for patients. Bone metabolism and prostate cancer metastasis to bone are complex processes. The interactions between host cells and metastatic prostate cancer cells are important components of organ-specific cancer progression. In addition to traditional treatment approaches, targeted therapy is currently becoming more popular. Bone metabolism, metastatic processes of prostate cancer, and the targeting of treatment for advanced disease are discussed here. Copyright © 2007 by Current Medicine Group LLC
    • …
    corecore