202 research outputs found
Potential Role of Protein Kinase B in Insulin-induced Glucose Transport, Glycogen Synthesis, and Protein Synthesis
Various biological responses stimulated by insulin
have been thought to be regulated by phosphatidylinosi-tol
3-kinase, including glucose transport, glycogen syn-thesis,
and protein synthesis. However, the molecular
link between phosphatidylinositol 3-kinase and these
biological responses has been poorly understood. Re-cently,
it has been shown that protein kinase B (PKB/c-Akt/
Rac) lies immediately downstream from phosphati-dylinositol
3-kinase. Here, we show that expression of a
constitutively active form of PKB induced glucose up-take,
glycogen synthesis, and protein synthesis in L6
myotubes downstream of phosphatidylinositol 3-kinase
and independent of Ras and mitogen-activated protein
kinase activation. Introduction of constitutively active
PKB induced glucose uptake and protein synthesis but
not glycogen synthesis in 3T3L-1 adipocytes, which lack
expression of glycogen synthase kinase 3 different from
L6 myotubes. Furthermore, we show that deactivation
of glycogen synthase kinase 3 and activation of rapamy-cin-
sensitive serine/threonine kinase by PKB in L6 myo-tubes
might be involved in the enhancement of glycogen
synthesis and protein synthesis, respectively. These re-sults
suggest that PKB acts as a key enzyme linking
phosphatidylinositol 3-kinase activation to multiple bi-ological
functions of insulin through regulation of
downstream kinases in skeletal muscle, a major target
tissue of insulin
Analysis of her1 and her7 Mutants Reveals a Spatio Temporal Separation of the Somite Clock Module
Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The “hairy and Enhancer of Split”- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1hu2124 and her7hu2526 were analyzed. In the course of embryonic development, her1hu2124 mutants exhibit disruption of the three anterior-most somite borders, whereas her7hu2526 mutants display somite border defects restricted to somites 8 (+/−3) to 17 (+/−3) along the anterior-posterior axis. Analysis of the molecular defects in her1hu2124 mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1hu2124 embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1hu2124 mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM)
The Effect of Enzymatically Polymerised Polyphenols on CD4 Binding and Cytokine Production in Murine Splenocytes
High-molecular weight polymerised polyphenols have been shown to exhibit anti-influenza virus, anti-HIV, and anti-cancer activities. The purpose of this study was to evaluate the immunomodulating activities of enzymatically polymerised polyphenols, and to clarify the underlying mechanisms of their effects. The cytokine-inducing activity of the enzymatically polymerised polyphenols derived from caffeic acid (CA), ferulic acid (FA), and p-coumaric acid (CoA) was investigated using murine splenocytes. Polymerised polyphenols, but not non-polymerised polyphenols, induced cytokine synthesis in murine splenocytes. Polymerised polyphenols induced several cytokines in murine splenocytes, with interferon-γ (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) being the most prominent. The underlying mechanisms of the effects of the polymerised polyphenols were then studied using neutralising antibodies and fluorescent-activated cell sorting (FACS) analysis. Our results show that polymerised polyphenols increased IFN-γ and GM-CSF production in splenocytes. In addition, the anti-CD4 neutralised monoclonal antibody (mAb) inhibited polymerised polyphenol-induced IFN-γ and GM-CSF secretion. Moreover, polymerised polyphenols bound directly to a recombinant CD4 protein, and FACS analysis confirmed that interaction occurs between polymerised polyphenols and CD4 molecules expressed on the cell surface. In this study, we clearly demonstrated that enzymatic polymerisation confers immunoactivating potential to phenylpropanoic acids, and CD4 plays a key role in their cytokine-inducing activity
Automated Alphabet Reduction for Protein Datasets
<p>Abstract</p> <p>Background</p> <p>We investigate automated and generic alphabet reduction techniques for protein structure prediction datasets. Reducing alphabet cardinality without losing key biochemical information opens the door to potentially faster machine learning, data mining and optimization applications in structural bioinformatics. Furthermore, reduced but informative alphabets often result in, e.g., more compact and human-friendly classification/clustering rules. In this paper we propose a robust and sophisticated alphabet reduction protocol based on mutual information and state-of-the-art optimization techniques.</p> <p>Results</p> <p>We applied this protocol to the prediction of two protein structural features: contact number and relative solvent accessibility. For both features we generated alphabets of two, three, four and five letters. The five-letter alphabets gave prediction accuracies statistically similar to that obtained using the full amino acid alphabet. Moreover, the automatically designed alphabets were compared against other reduced alphabets taken from the literature or human-designed, outperforming them. The differences between our alphabets and the alphabets taken from the literature were quantitatively analyzed. All the above process had been performed using a primary sequence representation of proteins. As a final experiment, we extrapolated the obtained five-letter alphabet to reduce a, much richer, protein representation based on evolutionary information for the prediction of the same two features. Again, the performance gap between the full representation and the reduced representation was small, showing that the results of our automated alphabet reduction protocol, even if they were obtained using a simple representation, are also able to capture the crucial information needed for state-of-the-art protein representations.</p> <p>Conclusion</p> <p>Our automated alphabet reduction protocol generates competent reduced alphabets tailored specifically for a variety of protein datasets. This process is done without any domain knowledge, using information theory metrics instead. The reduced alphabets contain some unexpected (but sound) groups of amino acids, thus suggesting new ways of interpreting the data.</p
Molecular Dynamics Simulation of Phosphorylated KID Post-Translational Modification
BACKGROUND:Kinase-inducible domain (KID) as transcriptional activator can stimulate target gene expression in signal transduction by associating with KID interacting domain (KIX). NMR spectra suggest that apo-KID is an unstructured protein. After post-translational modification by phosphorylation, KID undergoes a transition from disordered to well folded protein upon binding to KIX. However, the mechanism of folding coupled to binding is poorly understood. METHODOLOGY:To get an insight into the mechanism, we have performed ten trajectories of explicit-solvent molecular dynamics (MD) for both bound and apo phosphorylated KID (pKID). Ten MD simulations are sufficient to capture the average properties in the protein folding and unfolding. CONCLUSIONS:Room-temperature MD simulations suggest that pKID becomes more rigid and stable upon the KIX-binding. Kinetic analysis of high-temperature MD simulations shows that bound pKID and apo-pKID unfold via a three-state and a two-state process, respectively. Both kinetics and free energy landscape analyses indicate that bound pKID folds in the order of KIX access, initiation of pKID tertiary folding, folding of helix alpha(B), folding of helix alpha(A), completion of pKID tertiary folding, and finalization of pKID-KIX binding. Our data show that the folding pathways of apo-pKID are different from the bound state: the foldings of helices alpha(A) and alpha(B) are swapped. Here we also show that Asn139, Asp140 and Leu141 with large Phi-values are key residues in the folding of bound pKID. Our results are in good agreement with NMR experimental observations and provide significant insight into the general mechanisms of binding induced protein folding and other conformational adjustment in post-translational modification
Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis
The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a “shelf-screen” to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.National Institutes of Health (U.S.) (Grant T32MH020051)National Institutes of Health (U.S.) (Grant F32NS043872
Removal of Misincorporated Ribonucleotides from Prokaryotic Genomes: An Unexpected Role for Nucleotide Excision Repair
Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8th phosphodiester bond 5′ and 4th-5th phosphodiester bonds 3′ of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the broad list of helix-distorting modifications that are substrates for NER
- …