50 research outputs found

    Prevalence and clinical profile of glaucoma patients in rural Nigeria : a hospital based study

    Get PDF
    Purpose To determine the prevalence and clinical presentation of participants with glaucoma attending a public eye care facility in Nigeria. Method Hospital based retrospective study of glaucoma participants aged 50 years and above seen over a 5-year period. Descriptive statistics summarized the demographic, clinical characteristics and treatment of the participants and determined the association of variables with gender and age. Prevalence of the glaucoma by type, and their 95% confidence intervals (CI) were also calculated. Result Of the 5482 case files that were reviewed, 995 (18.15%, 95% Cl 17.15–19.19%) had glaucoma particularly primary open angle glaucoma (11.55%, 95%CI 10.73–12.42%) and were mostly females (564, 56.7%) aged 69 ± 12 years (range, 50–103 years). In contrast to other glaucoma types, the prevalence of primary angle closure glaucoma (3.68, 95%CI 3.22–4.22) increased by 15% over 5 years. The mean intraocular pressure ranged from 15–50 mmHg but higher in females than males (27.8 ± 6.1mmHg versus 26.6 ± 6.0 mmHg, P [removed]0.05). On presentation, the glaucoma hemi field test (GHFT) was outside the normal limits in 45.5% and 54.5% of males and females, respectively. The type of visual field defect was associated with glaucoma type (P = 0.047). Arcuate scotoma was most common (35.5%) across glaucoma types, paracentral scotoma more common in Secondary glaucoma while Seidel scotoma was highest in NTG (19.3%). Beta-blocker was the mainstay of management (42.2%) but more likely to be prescribed to males while more females received carbonic anhydrase inhibitors. Conclusions The high prevalence of glaucoma in older people remains a public health problem in Nigeria. The fact that about half of the participants presented with visual field defect suggests there is a need for public health messages to emphasize on early glaucoma screening, detection and management

    Preliminary report from the World Health Organisation Chest Radiography in Epidemiological Studies project.

    Get PDF
    Childhood pneumonia is among the leading infectious causes of mortality in children younger than 5 years of age globally. Streptococcus pneumoniae (pneumococcus) is the leading infectious cause of childhood bacterial pneumonia. The diagnosis of childhood pneumonia remains a critical epidemiological task for monitoring vaccine and treatment program effectiveness. The chest radiograph remains the most readily available and common imaging modality to assess childhood pneumonia. In 1997, the World Health Organization Radiology Working Group was established to provide a consensus method for the standardized definition for the interpretation of pediatric frontal chest radiographs, for use in bacterial vaccine efficacy trials in children. The definition was not designed for use in individual patient clinical management because of its emphasis on specificity at the expense of sensitivity. These definitions and endpoint conclusions were published in 2001 and an analysis of observer variation for these conclusions using a reference library of chest radiographs was published in 2005. In response to the technical needs identified through subsequent meetings, the World Health Organization Chest Radiography in Epidemiological Studies (CRES) project was initiated and is designed to be a continuation of the World Health Organization Radiology Working Group. The aims of the World Health Organization CRES project are to clarify the definitions used in the World Health Organization defined standardized interpretation of pediatric chest radiographs in bacterial vaccine impact and pneumonia epidemiological studies, reinforce the focus on reproducible chest radiograph readings, provide training and support with World Health Organization defined standardized interpretation of chest radiographs and develop guidelines and tools for investigators and site staff to assist in obtaining high-quality chest radiographs

    Discovery, Optimization, and Characterization of ML417: A Novel and Highly Selective D3 Dopamine Receptor Agonist

    Get PDF
    To identify novel D3 dopamine receptor (D3R) agonists, we conducted a high-throughput screen using a β-arrestin recruitment assay. Counterscreening of the hit compounds provided an assessment of their selectivity, efficacy, and potency. The most promising scaffold was optimized through medicinal chemistry resulting in enhanced potency and selectivity. The optimized compound, ML417 (20), potently promotes D3R-mediated β-arrestin translocation, G protein activation, and ERK1/2 phosphorylation (pERK) while lacking activity at other dopamine receptors. Screening of ML417 against multiple G protein-coupled receptors revealed exceptional global selectivity. Molecular modeling suggests that ML417 interacts with the D3R in a unique manner, possibly explaining its remarkable selectivity. ML417 was also found to protect against neurodegeneration of dopaminergic neurons derived from iPSCs. Together with promising pharmacokinetics and toxicology profiles, these results suggest that ML417 is a novel and uniquely selective D3R agonist that may serve as both a research tool and a therapeutic lead for the treatment of neuropsychiatric disorders

    Factors associated with delayed presentation to healthcare facilities for Lassa fever cases, Nigeria 2019: a retrospective cohort study.

    Get PDF
    BACKGROUND: Large outbreaks of Lassa fever (LF) occur annually in Nigeria. The case fatality rate among hospitalised cases is ~ 20%. The antiviral drug ribavirin along with supportive care and rehydration are the recommended treatments but must be administered early (within 6 days of symptom onset) for optimal results. We aimed to identify factors associated with late presentation of LF cases to a healthcare facility to inform interventions. METHODS: We undertook a retrospective cohort study of all laboratory confirmed LF cases reported in Nigeria from December 2018 to April 2019. We performed descriptive epidemiology and a univariate Cox proportional-hazards regression analysis to investigate the effect of clinical (symptom severity), epidemiological (age, sex, education, occupation, residential State) and exposure (travel, attendance at funeral, exposure to rodents or confirmed case) factors on time to presentation. RESULTS: Of 389 cases, median presentation time was 6 days (IQR 4-10 days), with 53% attending within 6 days. There were no differences in presentation times by sex but differences were noted by age-group; 60+ year-olds had the longest delays while 13-17 year-olds had the shortest. By sex and age, there were differences seen among the younger ages, with 0-4-year-old females presenting earlier than males (4 days and 73% vs. 10 days and 30%). For 5-12 and 13-17 year-olds, males presented sooner than females (males: 5 days, 65% and 3 days, 85% vs. females: 6 days, 50% and 5 days, 61%, respectively). Presentation times differed across occupations 4.5-9 days and 20-60%, transporters (people who drive informal public transport vehicles) had the longest delays. Other data were limited (41-95% missing). However, the Cox regression showed no factors were statistically associated with longer presentation time. CONCLUSIONS: Whilst we observed important differences in presentation delays across factors, our sample size was insufficient to show any statistically significant differences that might exist. However, almost half of cases presented after 6 days of onset, highlighting the need for more accurate and complete surveillance data to determine if there is a systemic or specific cause for delays, so to inform, monitor and evaluate public health strategies and improve outcomes

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore