271 research outputs found

    Uncertainty-principle noise in vacuum-tunneling transducers

    Full text link
    The fundamental sources of noise in a vacuum-tunneling probe used as an electromechanical transducer to monitor the location of a test mass are examined using a first-quantization formalism. We show that a tunneling transducer enforces the Heisenberg uncertainty principle for the position and momentum of a test mass monitored by the transducer through the presence of two sources of noise: the shot noise of the tunneling current and the momentum fluctuations transferred by the tunneling electrons to the test mass. We analyze a number of cases including symmetric and asymmetric rectangular potential barriers and a barrier in which there is a constant electric field. Practical configurations for reaching the quantum limit in measurements of the position of macroscopic bodies with such a class of transducers are studied

    Endothelial Dysfunction In Cardiovascular And Endocrine-metabolic Diseases: An Update.

    Get PDF
    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.44920-3

    Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Get PDF
    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations449920932CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    Influence of Aerobic Training on the Reduced Vasoconstriction to Angiotensin II in Rats Exposed to Intrauterine Growth Restriction: Possible Role of Oxidative Stress and AT(2) Receptor of Angiotensin II

    Get PDF
    Intrauterine growth restriction (IUGR) is associated with impaired vascular function, which contributes to the increased incidence of chronic disease. the aim of this study was to investigate whether aerobic training improves AngII-induced vasoconstriction in IUGR rats. Moreover, we assess the role of superoxide dismutase (SOD) isoforms and NADPH oxidase-derived superoxide anions in this improvement. Female Wistar rats were randomly divided into two groups on day 1 of pregnancy. A control group was fed standard chow ad libitum, and a restricted group was fed 50% of the ad libitum intake throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to 4 experimental groups: sedentary control (SC), trained control (TC), sedentary restricted (SRT), and trained restricted (TRT). the training protocol was performed on a treadmill and consisted of a continuous 60-min session 5 days/week for 10 weeks. Following aerobic training, concentration-response curves to AngII were obtained in endothelium-intact aortic rings. Protein expression of SOD isoforms, AngII receptors and the NADPH oxidase component p47(phox) was assessed by Western blot analysis. the dihydroethidium was used to evaluate the in situ superoxide levels under basal conditions or in the presence of apocynin, losartan or PD 123,319. Our results indicate that aerobic training can prevent IUGR-associated increases in AngII-dependent vasoconstriction and can restore basal superoxide levels in the aortic rings of TRT rats. Moreover, we observed that aerobic training normalized the increased p47(phox) protein expression and increased MnSOD and AT(2) receptor protein expression in thoracic aortas of SRT rats. in summary, aerobic training can result in an upregulation of antioxidant defense by improved of MnSOD expression and attenuation of NADPH oxidase component p47(phox). These effects are accompanied by increased expression of AT(2) receptor, which provide positive effects against Ang II-induced superoxide generation, resulting in attenuation of AngII-induced vasoconstriction.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Sch Med, Div Nephrol, São Paulo, BrazilUniv São Paulo, Dept Pharmacol, São Paulo, BrazilUniv São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Sci & Technol Inst, São Paulo, BrazilUniversidade Federal de São Paulo, Sch Med, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Sch Med, Div Nephrol, São Paulo, BrazilUniversidade Federal de São Paulo, Sci & Technol Inst, São Paulo, BrazilUniversidade Federal de São Paulo, Sch Med, Dept Physiol, São Paulo, BrazilFAPESP: 2007/58044-2FAPESP: 2010/51904-9Web of Scienc

    Upregulation of ERK1/2-eNOS via AT2 Receptors Decreases the Contractile Response to Angiotensin II in Resistance Mesenteric Arteries from Obese Rats

    Get PDF
    It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. the role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. the circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ São Paulo, Inst Biomed Sci, Dept Pharmacol, São Paulo, BrazilUniv Fed Goias, Div Cardiovasc Physiol, Dept Biol Sci, Jatai, BrazilUniversidade Federal de São Paulo, Div Nephrol, Dept Med, Escola Paulista Med, São Paulo, BrazilUniversidade Federal de São Paulo, Div Nephrol, Dept Med, Escola Paulista Med, São Paulo, BrazilFAPESP: 2007/58311-0FAPESP: 2008/51622-3FAPESP: 2010/03642-5Web of Scienc

    Noise Characteristics of a Four-Jet Impingement Device Inside a Broadband Engine Noise Simulator

    Get PDF
    The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order accurate weighted essentially non-oscillatory shock-capturing scheme. Impinging jet devices are often used as an experimental apparatus to emulate a broadband noise source. Although such devices have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. Thus, the underlying physical mechanisms that are responsible for the generation of sound waves are not well understood. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition of the flow field is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortex tubes in the center of the impingement region. The causality method based on Lighthill's acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term in the Lighthill's stress tensor plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a reduced-order linear acoustic model of the four-jet impingement device. Finally, three linear acoustic FJID models are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data

    Identification and Functional Testing of Novel Interacting Protein Partners for the Stress Sensors Wsc1p and Mid2p of \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e

    Get PDF
    Wsc1p and Mid2p are transmembrane signaling proteins of cell wall stress in the budding yeast Saccharomyces cerevisiae. When an environmental stress compromises cell wall integrity, they activate a cell response through the Cell Wall Integrity (CWI) pathway. Studies have shown that the cytoplasmic domain of Wsc1p initiates the CWI signaling cascade by interacting with Rom2p, a Rho1-GDP-GTP exchange factor. Binding of Rom2p to the cytoplasmic tail of Wsc1p requires dephosphorylation of specific serine residues but the mechanism by which the sensor is dephosphorylated and how it subsequently interacts with Rom2p remains unclear. We hypothesize that Wsc1p and Mid2p must be physically associated with interacting proteins other than Rom2p that facilitate its interaction and regulate the activation of CWI pathway. To address this, a cDNA plasmid library of yeast proteins was expressed in bait strains bearing membrane yeast two-hybrid (MYTH) reporter modules of Wsc1p and Mid2p, and their interacting preys were recovered and sequenced. 14 previously unreported interactors were confirmed for Wsc1p and 29 for Mid2p. The interactors’ functionality were assessed by cell growth assays and CWI pathway activation by western blot analysis of Slt2p/Mpk1p phosphorylation in null mutants of each interactor under defined stress conditions. The susceptibility of these strains to different stresses were tested against antifungal agents and chemicals. This study reports important novel protein interactions of Wsc1p and Mid2p that are associated with the cellular response to oxidative stress induced by Hydrogen Peroxide and cell wall stress induced by Caspofungin

    Novel Interactome of \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen

    Get PDF
    Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae. Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis
    corecore