15 research outputs found

    Major ions, δ18O, δ13C and 87Sr/86Sr compositions of water and precipitates from springs along the Cameroon Volcanic Line (Cameroon, West Africa): Implications for provenance and volcanic hazards

    Get PDF
    A combined study of major ions, δ18O, δD, 13C, 87Sr/86Sr isotopes, X-ray diffraction, scanning electron microscopy, and electron probe microanalyses on springs and spring mineral precipitates along the Cameroon Volcanic Line (CVL) was undertaken to understand water chemistry, and infer the type and origin of the precipitates. The waters are of evaporated Na + KCl and non-evaporated Ca + MgHCO3 types, with the more mineralized (electrical conductivity-EC of 13130 μS/cm) Lobe spring inferred to result from interaction of circulating 49 °C waters with magmatic volatiles of the active Mt. Cameroon. Water mineralization in the other springs follows the order: Sabga A > Sabga B > Bambui B > Bambui A > Nyos Cave. But for the Nyos Cave spring, all other springs contain fluoride (up to 0.5–35.6 mg/l above WHO potable water upper limit). The Sabga spring contains arsenic (up to 1.3 mg/l above the WHO limits). The springs show low fractionation temperatures in the range of 19–43 ᵒC. The Lobe and Sabga A springs are precipitating dolomite (CaMg(CO3)2), while the Nyos Cave, Bambui A, Bambui B and Sabga B springs precipitate trona ((Na3H(CO3)2.H2O). Our data suggest a marine provenance for the carbonates, and point to a volcanic input for the Lobe, Nyos, Sabga A, and Bambui A springs. The latter springs are therefore proposed as proxies for monitoring volcanic activity for hazard mitigation along the CVL

    The complexities of assessing volcanic hazards along the Cameroon Volcanic Line using spatial distribution of monogenetic volcanoes

    Get PDF
    International audienceVolcanic eruptions represent hazards for local communities and infrastructure. Monogenetic volcanoes (usually) erupt only once, and then volcanic activity moves to another location, making quantitative assessment of eruptive hazards challenging. Spatio-temporal patterns in the occurrence of these eruptions may provide valuable information on locations more likely to host future eruptions within monogenetic volcanic fields. While the eruption histories of many stratovolcanoes along the Cameroon Volcanic Line (CVL) are relatively well studied, only fragmentary data exist on the distribution and timing of this region's extensive monogenetic volcanism (scoria cones, tuff rings, maars). Here, we present for the first time a catalog of monogenetic vents on the CVL. These were identified by their characteristic morphologies using field knowledge, the global SRTM Digital Elevation Model (30 m resolution), and satellite imagery. More than ~1100 scoria cones and 50 maars/tuff rings were identified and divided into eight monogenetic volcanic fields based on the visual assessment of clustering and geological information. Spatial analyses show a large range of areal densities between the volcanic fields from >0.2 km-2 to 0.02 km-2 from the southwest towards the northeast. This finding is in general agreement with previous observations, indicating closely spaced and smaller edifices typical of fissure-fed eruptions on the flanks of Bioko and Mt. Cameroon in the southwest, and a more focused plumbing system resulting in larger edifices of lower spatial density towards the northeast. Spatial patterns were smoothed via kernel density estimates (KDE) using the Summed Asymptotic Mean Squared Error (SAMSE) bandwidth estimator, the results of which may provide an uncertainty range for a first-order hazard assessment of vent opening probability along the CVL. Due to the scarce chronological data and the complex structural controls across the region, it was not possible to estimate the number of vents formed during the same eruptive events. Similarly, the percentage of hidden (buried, eroded) vents could not be assessed with any acceptable statistical certainty. Furthermore, the impact of different approaches (convex hull, minimum area rectangle and ellipse, KDE isopaches) to define volcanic field boundaries on the spatial distribution of vents was tested. While the KDE boundary definition appears to reflect the structure of a monogenetic volcanic field better than other approaches, no ideal boundary definition was found. Finally, the dimension of scoria cones (approximated by their basal diameters) across the CVL was contrasted to the specific geodynamic setting. This region presents a complex problem for volcanic hazard analysis that cannot be solved through basic statistical methods and, thus, provides a potential testbed for novel, multi-disciplinary approaches

    A comparative review of petrogenetic processes beneath the Cameroon Volcanic Line: Geochemical constraints

    Get PDF
    The origin and petrogenesis of the Cameroon Volcanic Line (CVL), composed of volcanoes that form on both the ocean floor and the continental crust, are difficult to understand because of the diversity, heterogeneity, and nature of available data. Major and trace elements, and Sr-Nd-Pb isotope data of volcanic rocks of the CVL spanning four decades have been compiled to reinterpret their origin and petrogenesis. Volcanic rocks range from nephelinite, basanite and alkali basalts to phonolite, trachyte and rhyolite with the presence of a compositional gap between SiO2 58–64 wt.%. Similarities in geochemical characteristics, modeled results for two component mixing, and the existence of mantle xenoliths in most mafic rocks argue against significant crustal contamination. Major and trace element evidences indicate that the melting of mantle rocks to generate the CVL magma occurred dominantly in the garnet lherzolite stability field. Melting models suggest small degree (<3%) partial melting of mantle bearing (6–10%) garnet for Mt. Etinde, the Ngaoundere Plateau and the Biu Plateau, and <5% of garnet for the oceanic sector of the CVL, Mt. Cameroon, Mt. Bambouto, Mt. Manengouba and the Oku Volcanic Group. The Sr-Nd-Pb isotope systematics suggest that mixing in various proportions of Depleted MORB Mantle (DMM) with enriched mantle 1 and 2 (EM1 and EM2) could account for the complex isotopic characteristics of the CVL lavas. Low Mg number (Mg# = 100 × MgO/(MgO + FeO)) and Ni, Cr and Co contents of the CVL mafic lavas reveal their crystallization from fractionated melts. The absence of systematic variation in Nb/Ta and Zr/Hf ratios, and Sr-Nd isotope compositions between the mafic and felsic lavas indicates progressive evolution of magmas by fractional crystallization. Trace element ratios and their plots corroborate mantle heterogeneity and reveal distinct geochemical signatures for individual the CVL volcanoes

    Regional geochemical baseline concentration of potentially toxic trace metals in the mineralized Lom Basin, East Cameroon: a tool for contamination assessment

    No full text
    Abstract The distribution of trace metals in active stream sediments from the mineralized Lom Basin has been evaluated. Fifty-five bottom sediments were collected and the mineralogical composition of six pulverized samples determined by XRD. The fine fraction (< 150 µm) was subjected to total digestion (HClO4 + HF + HCl) and analyzed for trace metals using a combination of ICP-MS and AAS analytical methods. Results show that the mineralogy of stream sediments is dominated by quartz (39–86%), phyllosilicates (0–45%) and feldspars (0–27%). Mean concentrations of the analyzed metals are low (e.g. As = 99.40 µg/kg, Zn = 573.24 µg/kg, V = 963.14 µg/kg and Cr = 763.93 µg/kg). Iron and Mn have significant average concentrations of 28.325 and 442 mg/kg, respectively. Background and threshold values of the trace metals were computed statistically to determine geochemical anomalies of geologic or anthropogenic origin, particularly mining activity. Factor analysis, applied on normalized data, identified three associations: Ni–Cr–V–Co–As–Se–pH, Cu–Zn–Hg–Pb–Cd–Sc and Fe–Mn. The first association is controlled by source geology and the neutral pH, the second by sulphide mineralization and the last by chemical weathering of ferromagnesian minerals. Spatial analysis reveals similar distribution trends for Co–Cr–V–Ni and Cu–Zn–Pb–Sc reflecting the lithology and sulphide mineralization in the basin. Relatively high levels of As were concordant with reported gold occurrences in the area while Fe and Mn distribution are consistent with their source from the Fe-bearing metamorphic rocks. These findings provide baseline geochemical values for common and parallel geological domains in the eastern region of Cameroon. Although this study shows that the stream sediments are not polluted, the evaluation of metal composition in environmental samples from abandoned and active mine sites for comparison and environmental health risk assessment is highly recommended

    Eruption history and petrogenesis of rocks from Nyos volcano (NW Cameroon): Evidence from lithostratigraphy and geochemistry

    No full text
    Even though ca 1746 people and over 3000 cattle were killed in 1986 by sudden release of about 800 million m3 of CO2 from Lake Nyos volcano in northwest Cameroon, the lake's formation history is not known. Here we report results of a lithostratigraphic and petrogenetic study of Nyos volcano that allows us to confirm its phreatomagmatic (maar) origin. Eruptive products are divided into 2 units, the phases of each of which are closely related in time. Unit A comprises 4 phases, the last (A-4) represents the cataclysmic phreatomagmatic formation of Nyos maar and may have been triggered by collapse of the vent system of the previous (A-1 to A-3) phases, and/or reactivation of basement faults. After a repose period, activity shifted NE of the maar to form Unit B products. The B-1 phase of this unit deposited the scoria now covering most of the Lake Nyos area. Unit B-2 constructed the Fon's cone. A small lava flow (Unit B-3) represents the latest phase of volcanic activity of Nyos volcano. Based on area-thickness estimation methods, a total of ca 0.8 km3 of eruptive material was produced from the volcano. Geochemical data suggest that magma of the 2 units probably formed by melting of the same garnet-bearing OIB-like asthenospheric mantle source, and evolved mainly by crustal contamination and fractional crystallization in independent magma batches that erupted without mixing. Our results provide a basis for advice on general hazard mitigation in the Lake Nyos area

    Major elements, trace elements and Sr-Nd-Pb isotopes form lavas of lakes Nyos, Wum, Elum and Oku sampled in the Oku Volcanic Group of the Cameroon Volcanic Line

    No full text
    Lake Nyos is located at the summit of a stratovolcano in the Oku Volcanic Group (OVG) along the Cameroon Volcanic Line. The sudden release of magmatic CO2 trapped at the bottom of Lake Nyos in August 1986 caused historical casualties of 1750 people and over 3000 cattle. New geochemical data of volcanic rocks from the Nyos volcano and the first available data for volcanic rocks from other maar-bearing volcanoes (Lakes Elum, Wum and Oku) in the OVG are presented and compared. Lavas from the Nyos, Elum and Wum volcanoes show similarities in major and trace elements and Sr?Nd?Pb isotopes, suggestive of a similar mantle source. However, this source is slightly different from that of the Oku volcano. The samples from Lake Oku have lower alkali, higher TiO2 and more depletion and enrichment in most incompatible trace elements than those from the Nyos, Elum and Wum volcanoes. These differences and those observed in the Sr?Nd?Pb results are consistent with a heterogeneous source for lavas in the OVG. Trace element compositions suggested the presence of garnet in the source (< 6% garnet) and modelled melting results indicate < 2% partial melting of the source material. Isotope data plot within the focal zone, extending towards enriched mantle 1 (EM1; e.g. Lakes Oku and Nyos samples). This indicates the involvement of at least three mantle components: depleted mid-ocean ridge basalt mantle, high-µ and EM1 components in the magmatism of the lavas studied. The contributions of these components in different proportions, originating from asthenospheric and subcontinental lithospheric mantle sources, can account for the observed variations in geochemical characteristics. The geochemical characteristics of the studied lavas indicate that the magma source need not necessarily have an abnormal CO2 concentration to pose a potential threat. Degassing of an ordinary magma chamber and the migration of gas to the bottom of the lakes through cracks and faults can lead to the accumulation of CO2 in lake bottoms. This is controlled by tectonic parameters (fractures and faults) that enhance degassing from the magma chamber to the lake bottom and physical parameters of the lake (e.g. size, depth, temperature and solubility) that control CO2 stability

    Disaster prevention, disaster preparedness and local community resilience within the context of disaster risk management in Cameroon

    No full text
    Cameroon was one of the 57 countries that participated in the Global Network of Civil Society Organizations for Disaster Reduction (GNDR) Views from the Frontline (VFL) 2013 project on everyday disasters, community resilience and disaster preparedness. Working with 6 other civil society organizations, Geotechnology, Environmental Assessment and Disaster Risk Reduction administered 400 questionnaires to frontliners in 7 administrative regions of the country on 14 disaster indicators that assessed the underlying causes of disasters and the level of preparedness and resilience of the communities. Scores from the 89% of informants who responded show that Cameroon occupied the 43rd position globally, was 15th out of the 23 African countries, and was 7th out of the 9 West African countries surveyed. Cameroon average scores for all 14 indicators were lower (poorer) than the West African average, suggesting that a lot more effort is needed in managing disaster risks in the country, i.e., reducing vulnerabilities and increasing preparedness and resilience. At the national level, the Center and Adamaoua Regions recorded the lowest scores of the survey. Above-average scores recorded for some indicators in the Southwest, Northwest and Far North Regions are interpreted to be due to disaster prevention activities like monitoring via early warning systems, resilience building and outreach exercises carried out for disasters like landslides, floods, gas explosions from lakes, and volcanic eruptions, in these areas. Cameroon presently has many laws relating to disaster risk management matters, but an analysis of how the laws are applied shows that the expected results have not been attained, mainly because of over-centralization and a reactive, rather than a proactive approach to disaster risk management. Given her current disaster risk profile, Cameroon has to increase research, better manage, and make disaster risks a central tenet in her development project decision-making, if the goal earmarked in her development vision to become a newly industrialized country by 2035 has to be realized. We propose the creation of an autonomous statutory National Disaster Risk Management Agency which will have a local community-driven bottom-top approach to disaster risk management, and disseminate appropriately tailored disaster risk information to promote a proactive community-based resilience and disaster prevention framework. This will fulfill the post-2015 Sendai framework priority of action No. 2 (strengthening disaster risk governance to manage disaster risk) and appropriately prepare Cameroon to face the challenges of the Sustainable Development Goals (SDGs)
    corecore