262 research outputs found

    Discordant localization of WFA reactivity and brevican/ADAMTS-derived fragment in rodent brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteoglycan (PG) in the extracellular matrix (ECM) of the central nervous system (CNS) may act as a barrier for neurite elongation in a growth tract, and regulate other characteristics collectively defined as structural neural plasticity. Proteolytic cleavage of PGs appears to alter the environment to one favoring plasticity and growth. Brevican belongs to the lectican family of aggregating, chondroitin sulfate (CS)-bearing PGs, and it modulates neurite outgrowth and synaptogenesis. Several ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are glutamyl-endopeptidases that proteolytically cleave brevican. The purpose of this study was to localize regions of adult CNS that contain a proteolytic-derived fragment of brevican which bears the ADAMTS-cleaved neoepitope sequence. These regions were compared to areas of <it>Wisteria floribunda </it>agglutin (WFA) reactivity, a common reagent used to detect "perineuronal nets" (PNNs) of intact matrix and a marker which is thought to label regions of relative neural stability.</p> <p>Results</p> <p>WFA reactivity was found primarily as PNNs, whereas brevican and the ADAMTS-cleaved fragment of brevican were more broadly distributed in neuropil, and in particular regions localized to PNNs. One example is hippocampus where the ADAMTS-cleaved brevican fragment is found surrounding pyramidal neurons, in neuropil of stratum oriens/radiatum and the lacunosum moleculare. The fragment was less abundant in the molecular layer of the dentate gyrus. Mostly PNNs of scattered interneurons along the pyramidal layer were identified by WFA. In lateral thalamus, the reticular thalamic nucleus stained abundantly with WFA whereas ventral posterior nuclei were markedly immunopositive for ADAMTS-cleaved brevican. Using Western blotting techniques, no common species were reactive for brevican and WFA.</p> <p>Conclusion</p> <p>In general, a marked discordance was observed in the regional localization between WFA and brevican or the ADAMTS-derived N-terminal fragment of brevican. Functionally, this difference may correspond to regions with varied prevalence for neural stability/plasticity.</p

    Neuroprotective Activity of Leukemia Inhibitory Factor Is Relayed through Myeloid Zinc Finger-1 in a Rat Model of Stroke

    Get PDF
    The aim of this study was to determine whether leukemia inhibitory factor (LIF) exerts its neuroprotective effects through signal transduction of the transcription factor myeloid zinc finger-1 (MZF-1). According to the hypothesis of this study, MZF-1 mediates LIF-induced neuroprotective signaling during ELVO through increased expression and transcriptional activity. To determine the in vivo role of MZF-1 in LIF-induced neuroprotection, we used Genomatix software was used to MZF-1 sites in the promoter region of the rat superoxide dismutase 3 (SOD3) gene. Stroke was induced via middle cerebral artery occlusion, and animals were administered PBS or 125 ÎŒg/kg LIF at 6, 24, and 48 h after the injury. MZF-1 binding activity was measured using electrophoretic mobility shift assay (EMSA) and its expression/localization were determined using western blot and immunohistochemical analysis. To determine whether MZF-1 relays LIF-induced neuroprotection in vitro, primary cultured neurons were subjected to oxygen-glucose deprivation (OGD) after treatment with PBS or LIF. MZF-1 expression was measured in vitro using real time PCR and immunohistochemical staining. Transfection with siRNA was used to determine whether LIF protected cultured neurons against OGD after silencing MZF-1 expression. Four MZF-1 binding sites were identified by Genomatix, and EMSA confirmed in vivo binding activity in brain after MCAO. LIF significantly increased MZF-1 protein levels compared to PBS treatment at 72 h post-MCAO. In vivo nuclear localization of MZF-1 as well as co-localization of SOD3 and MZF-1 was observed in the cortical neurons of LIF-treated rats. Primary cultured neurons treated with LIF had significantly higher levels of MZF-1 mRNA and protein after LIF treatment compared to neurons treated with PBS. Finally, knockdown MZF-1 using siRNA counteracted the neuroprotective effects of LIF in vitro. These data demonstrate that LIF-mediated neuroprotection is dependent upon MZF-1 activity. Furthermore, these findings identify a novel neuroprotective pathway that employs MZF-1, a transcription factor associated with hematopoietic gene expression

    Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia-ischemia in the neonatal rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia-ischemia (H-I) can produce widespread neurodegeneration and deep cerebral white matter injury in the neonate. Resident microglia and invading leukocytes promote lesion progression by releasing reactive oxygen species, proteases and other pro-inflammatory mediators. After injury, expression of the gelatin-degrading matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are thought to result in the proteolysis of extracellular matrix (ECM), activation of cytokines/chemokines, and the loss of vascular integrity. Thus, therapies targeting ECM degradation and progressive neuroinflammation may be beneficial in reducing H-I – induced neuropathy. Minocycline has MMP-inhibitory properties and is both anti-inflammatory and neuroprotective. AG3340 (prinomastat) is an MMP inhibitor with high selectivity for the gelatinases. The purpose of this study was to determine whether these compounds could limit H-I – induced injury when administered at a delayed time point.</p> <p>Methods</p> <p>Sprague-Dawley rats were exposed to H-I at postnatal day 7 (P7), consisting of unilateral carotid artery ligation followed by 90 min exposure to 8% O<sub>2</sub>. Minocycline, AG3340, or vehicle were administered once daily for 6 days, beginning 24 hours after insult. Animals were sacrificed at P14 for neurohistological assessments. Immunohistochemistry was performed to determine the degree of reactive astrogliosis and immune cell activation/recruitment. Neural injury was detected using the Fluoro-Jade stain, a marker that identifies degenerating cells.</p> <p>Results</p> <p>CD11b and glial fibrillary acidic protein (GFAP) immunopositive cells increased in ipsilateral cortex after treatment with vehicle alone, demonstrating microglia/macrophage recruitment and reactive astrogliosis, respectively. Fluoro-Jade staining was markedly increased throughout the fronto-parietal cortex, striatum and hippocampus. Treatment with minocycline or AG3340 inhibited microglia/macrophage recruitment, attenuated astrogliosis and reduced Fluoro-Jade staining when compared to vehicle alone.</p> <p>Conclusion</p> <p>The selective gelatinase inhibitor AG3340 showed equal efficacy in reducing neural injury and dampening neuroinflammation when compared to the anti-inflammatory compound minocycline. Thus, MMP-2 and MMP-9 may be viable therapeutic targets to treat neonatal brain injury.</p

    Translational Evaluation of Acid/Base and Electrolyte Alterations in Rodent Model of Focal Ischemia

    Get PDF
    BACKGROUND AND PURPOSE: Acid/base and electrolytes could provide clinically valuable information about cerebral infarct core and penumbra. We evaluated associations between acid/base and electrolyte changes and outcomes in 2 rat models of stroke, permanent, and transient middle cerebral artery occlusion. METHODS: Three-month old Sprague-Dawley rats underwent permanent or transient middle cerebral artery occlusion. Pre- and post-middle cerebral artery occlusion venous samples for permanent and transient models provided pH, carbon dioxide, oxygen, glucose, and electrolyte values of ionized calcium, potassium, and sodium. Multiple regression determined predictors of infarct volume from these values, and Kaplan-Meier curve analyzed morality between permanent and transient middle cerebral artery occlusion models. RESULTS: Analysis indicated significant differences in the blood gas and electrolytes between pre- to post-middle cerebral artery occlusion. A decrease in pH and sodium with increases in carbon dioxide, potassium, ionized calcium, and glucose changes were found in both middle cerebral artery occlusion models; while hematocrit and hemoglobin were significant in the transient model. pH and ionized calcium were predictors of infarct volume in the permanent model, as changes in pH and ionized calcium decreased, infarct volume increased. CONCLUSIONS: There are acute changes in acid/base balance and electrolytes during stroke in transient and permanent rodent models. Additionally, we found pH and ionized calcium changes predicted stroke volume in the permanent middle cerebral artery occlusion model. These preliminary findings are novel, and warrant further exploration in human conditions

    Deletion of SIRT1 From Hepatocytes in Mice Disrupts Lipin-1 Signaling and Aggravates Alcoholic Fatty Liver

    Get PDF
    Sirtuin (SIRT1) is a NAD+-dependent protein deacetylase that regulates hepatic lipid metabolism by modifying histones and transcription factors. Ethanol exposure disrupts SIRT1 activity and contributes to alcoholic liver disease (ALD) in rodents, but the exact pathogenic mechanism is not clear. We compared mice with liver-specific deletion of Sirt1 (Sirt1LKO) mice with their LOX littermates (controls)

    Experimental stroke differentially affects discrete subpopulations of splenic macrophages

    Get PDF
    Changes to the immune system after stroke are complex and can result in both pro-inflammatory and immunosuppressive consequences. Following ischemic stroke, brain resident microglia are activated and circulating monocytes are recruited to the injury site. In contrast, there is a systemic deactivation of monocytes/macrophages that may contribute to immunosuppression and the high incidence of bacterial infection experienced by stroke patients. The manipulation of macrophage subsets may be a useful therapeutic strategy to reduce infection and improve outcome in patients after stroke. Recent research has enhanced our understanding of the heterogeneity of macrophages even within the same tissue. The spleen is the largest natural reservoir of immune cells, many of which are mobilized to the site of injury after ischemic stroke and is notable for the diversity of its functionally distinct macrophage subpopulations associated with specific micro-anatomical locations. Here, we describe the effects of experimental stroke in mice on these distinct splenic macrophage subpopulations. Red pulp (RP) and marginal zone macrophages (MZM) specifically showed increases in density and alterations in micro-anatomical location. These changes were not due to increased recruitment from the bone marrow but may be associated with increases in local proliferation. Genes associated with phagocytosis and proteolytic processing were upregulated in the spleen after stroke with increased expression of the lysosome-associated protein lysosomal-associated membrane proteins specifically increased in RP and MZM subsets. In contrast, MHC class II expression was reduced specifically in these populations. Furthermore, genes associated with macrophage ability to communicate with other immune cells, such as co-stimulatory molecules and inflammatory cytokine production, were also downregulated in the spleen after stroke. These findings suggest that selective splenic macrophage functions could be impaired after stroke and the contribution of macrophages to stroke-associated pathology and infectious complications should be considered at a subset-specific level. Therefore, optimal therapeutic manipulation of macrophages to improve stroke outcome is likely to require selective targeting of functionally and spatially distinct subpopulations

    Exploring the molecular mechanisms underlying the potentiation of exogenous growth hormone on alcohol-induced fatty liver diseases in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth hormone (GH) is an essential regulator of intrahepatic lipid metabolism by activating multiple complex hepatic signaling cascades. Here, we examined whether chronic exogenous GH administration (via gene therapy) could ameliorate liver steatosis in animal models of alcoholic fatty liver disease (AFLD) and explored the underlying molecular mechanisms.</p> <p>Methods</p> <p>Male C57BL/6J mice were fed either an alcohol or a control liquid diet with or without GH therapy for 6 weeks. Biochemical parameters, liver histology, oxidative stress markers, and serum high molecular weight (HMW) adiponectin were measured. Quantitative real-time PCR and western blotting were also conducted to determine the underlying molecular mechanism.</p> <p>Results</p> <p>Serum HMW adiponectin levels were significantly higher in the GH1-treated control group than in the control group (3.98 ± 0.71 Όg/mL vs. 3.07 ± 0.55 Όg/mL; <it>P </it>< 0.001). GH1 therapy reversed HMW adiponectin levels to the normal levels in the alcohol-fed group. Alcohol feeding significantly reduced hepatic adipoR2 mRNA expression compared with that in the control group (0.71 ± 0.17 vs. 1.03 ± 0.19; <it>P </it>< 0.001), which was reversed by GH therapy. GH1 therapy also significantly increased the relative mRNA (1.98 ± 0.15 vs. 0.98 ± 0.15) and protein levels of SIRT1 (2.18 ± 0.37 vs. 0.99 ± 0.17) in the alcohol-fed group compared with those in the control group (both, <it>P </it>< 0.001). The alcohol diet decreased the phosphorylated and total protein levels of hepatic AMP-activated kinase-α (AMPKα) (phosphorylated protein: 0.40 ± 0.14 vs. 1.00 ± 0.12; total protein: 0.32 ± 0.12 vs. 1.00 ± 0.14; both, <it>P </it>< 0.001) and peroxisome proliferator activated receptor-α (PPARα) (phosphorylated protein: 0.30 ± 0.09 vs. 1.00 ± 0.09; total protein: 0.27 ± 0.10 vs. 1.00 ± 0.13; both, <it>P </it>< 0.001), which were restored by GH1 therapy. GH therapy also decreased the severity of fatty liver in alcohol-fed mice.</p> <p>Conclusions</p> <p>GH therapy had positive effects on AFLD and may offer a promising approach to prevent or treat AFLD. These beneficial effects of GH on AFLD were achieved through the activation of the hepatic adiponectin-SIRT1-AMPK and PPARα-AMPK signaling systems.</p

    Exendin-4 Improves Steatohepatitis by Increasing Sirt1 Expression in High-Fat Diet-Induced Obese C57BL/6J Mice

    Get PDF
    The effects of exendin-4 on Sirt1 expression as a mechanism of reducing fatty liver have not been previously reported. Therefore, we investigated whether the beneficial effects of exendin-4 treatment on fatty liver are mediated via Sirt1 in high-fat (HF) diet-induced obese C57BL/6J mice and related cell culture models. Exendin-4 treatment decreased body weight, serum free fatty acid (FA), and triglyceride levels in HF-induced obese C57BL/6J mice. Histological analysis showed that exendin-4 reversed HF-induced hepatic accumulation of lipids and inflammation. Exendin-4 treatment increased mRNA and protein expression of Sirt1 and its downstream factor, AMPK, in vivo and also induced genes associated with FA oxidation and glucose metabolism. In addition, a significant increase in the hepatic expression of Lkb1 and Nampt mRNA was observed in exendin-4-treated groups. We also observed increased expression of phospho-Foxo1 and GLUT2, which are involved in hepatic glucose metabolism. In HepG2 and Huh7 cells, mRNA and protein expressions of GLP-1R were increased by exendin-4 treatment in a dose-dependent manner. Exendin-4 enhanced protein expression of Sirt1 and phospho-AMPKα in HepG2 cells treated with 0.4 mM palmitic acid. We also found that Sirt1 was an upstream regulator of AMPK in hepatocytes. A novel finding of this study was the observation that expression of GLP-1R is proportional to exendin-4 concentration and exendin-4 could attenuate fatty liver through activation of Sirt1

    Repressive Effects of Resveratrol on Androgen Receptor Transcriptional Activity

    Get PDF
    The chemopreventive effects of resveratrol (RSV) on prostate cancer have been well established; the androgen receptor (AR) plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+) cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(-) cells serving as controls. AR(+) cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP) assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE).AR in the AR (+) stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding
    • 

    corecore