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Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3

increase in leptomeningeal arteries affected by cerebral amyloid angiopathy

Aims: Amyloid beta (Ab) accumulation in the walls of

leptomeningeal arteries as cerebral amyloid angiopathy

(CAA) is a major feature of Alzheimer’s disease. In this

study, we used global quantitative proteomic analysis to

examine the hypothesis that the leptomeningeal arteries

derived from patients with CAA have a distinct endophe-

notypic profile compared to those from young and elderly

controls. Methods: Freshly dissected leptomeningeal

arteries from the Newcastle Brain Tissue Resource and

Edinburgh Sudden Death Brain Bank from seven elderly

(82.9 � 7.5 years) females with severe capillary and

arterial CAA, as well as seven elderly (88.3 � 8.6 years)

and five young (45.4 � 3.9 years) females without CAA

were used in this study. Arteries from four patients with

CAA, two young and two elderly controls were individu-

ally analysed using quantitative proteomics. Key pro-

teomic findings were then validated using

immunohistochemistry. Results: Bioinformatics interpre-

tation of the results showed a significant enrichment of

the immune response/classical complement and extra-

cellular matrix remodelling pathways (P < 0.05) in

arteries affected by CAA vs. those from young and elderly

controls. Clusterin (apolipoprotein J) and tissue inhibitor

of metalloproteinases-3 (TIMP3), validated using

immunohistochemistry, were shown to co-localize with

Ab and to be up-regulated in leptomeningeal arteries

from CAA patients compared to young and elderly con-

trols. Conclusions: Global proteomic profiling of brain

leptomeningeal arteries revealed that clusterin and

TIMP3 increase in leptomeningeal arteries affected by

CAA. We propose that clusterin and TIMP3 could facili-

tate perivascular clearance and may serve as novel can-

didate therapeutic targets for CAA.

Keywords: clusterin, complement pathway, extracellularmatrix remodelling, leptomeningeal arteries, proteomics, TIMP3

Introduction

The deposition of amyloid-b (Ab) peptides in the walls

of cerebral arteries as cerebral amyloid angiopathy

(CAA) is a major feature of Alzheimer’s disease and

may contribute to cognitive decline [1,2]. CAA
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predominantly affects the leptomeningeal and cortical

arteries especially in the occipital lobe, while capillar-

ies are less frequently and veins rarely involved [3–5].

In the majority of cases there is no overproduction of

Ab in the vessel wall, suggesting that the deposition

of Ab in the walls of cerebral arteries is a result of a

failure of elimination of neuronally derived Ab [6].

Increasing age and possession of at least one apolipopro-

tein e4 (APOE4) allele are risk factors for CAA and both

have been suggested to impair cerebral Ab clearance sys-

tems, thereby reducing Ab elimination from the brain

[7–10]. We have demonstrated that Ab and other

solutes are eliminated along the basement membranes of

capillaries and arteries, effectively the lymphatic drai-

nage of the brain [11]. Experimental work involving

intraparenchymal injections of tracers demonstrated

that the biochemical structure and morphology of the

basement membranes of capillaries and arteries change

with age and with possession of APOE4 genotype, result-

ing in failure of efficient clearance of Ab [12–14]. The

exact targets for the facilitation of perivascular clearance

of Ab are not clear.

Proteomics allows the in-depth and global assess-

ment of gene products at the protein level as they

occur in a variety of biological specimens, including

cell lines, tissue, blood and proximal fluids. The

advanced use of liquid chromatography combined with

mass spectrometry permits the identification of thou-

sands of proteins with ultra-high precision and sensitiv-

ity, not available by any other analytical approach.

Using stable isotope isobaric reagents allow such pro-

teomes to be profiled in parallel across multiple biologi-

cal or clinical states under identical analytical

conditions, a feature referred to as the multiplex advan-

tage [15–23]. For example, such a strategy allows the

comparison of a given in vitro or in vivo model under a

given homeostatic state (that is physiological condition)

relative to a perturbation state (that is pathological

condition or exposure to a stimulus) under exactly the

same experimental conditions.

This study employed isobaric quantitative proteomic

analysis of fresh frozen human leptomeningeal arteries

from young and elderly subjects and patients with CAA

to test the hypothesis that leptomeningeal arteries

derived from patients with CAA have a unique

endophenotypic profile compared to those from young

and elderly controls.

Materials and methods

Isolation of human leptomeningeal arteries

Human fresh frozen post mortem leptomeningeal arter-

ies from the Newcastle Brain Tissue Resource and

MRC Sudden Death Brain & Tissue Bank (Edinburgh)

were used for this study. CAA cases were diagnosed

post mortem by JA, according to published criteria

including the neuritic Braak stages [24], Thal amyloid

phases [25], CERAD scores [26], NIA-AA scores [27]

and McKeith criteria [28] and showed varying degrees

of Alzheimer’s disease pathology. For CAA we used a

recently developed staging system, which assesses

meningeal and parenchymal CAA separately and also

scores capillary CAA [1,2]. All CAA cases had severe

CAA as they showed widespread circumferential Ab in

meningeal and cortical arterial vessels as well as Ab
depositions in capillary walls. None of the cases was

diagnosed with CAA during their lifetime. The cases

from the MRC Sudden Death Brain & Tissue Bank

(Edinburgh) had no neurological disease during life

and no significant neuropathological changes post

mortem. We excluded cases with arteriolosclerosis/lipo-

hyalinosis from this cohort. Samples were collected

and prepared in accordance with the National

Research Ethics Service-approved protocols. Lep-

tomeningeal arteries in the occipital regions were

removed from the frozen coronal slices from brains of

young females (45.4 � 3.9 years; n = 5), elderly

females without CAA (88.3 � 8.6 years; n = 7) and

females with severe CAA (82.6 � 7.5 years; n = 7)

(Table 1). Only female subjects were included in the

present study as it has been shown that sex-dependent

differences exist in CAA [29–31]. The frozen coronal

slices were placed at �20°C overnight to acclimatize

from the �70°C storage prior to dissection in a cold

cabinet at �12°C. Arteries were identified based on

their morphology of a vessel and they were distin-

guished from veins by the thicker wall and lep-

tomeningeal sheet as they penetrate the cortex. The

abundant presence of vascular smooth muscle actin

confirmed they were arteries. Selected vessels were

eased with a micro-scalpel from the meningeal surface

of the gyri and sulci, removed and placed in pre-

cooled tubes to avoid thawing. These specimens were

then snap frozen at �80°C.

© 2016 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd
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Quantitative proteomic analysis on human
leptomeningeal arteries

For the proteomic analysis, samples from two young and

two elderly subjects and four patients with CAA were

randomly selected from the cohort (Table 1). The justifi-

cation for this number of CAA cases was to compensate

for their innate tissue heterogeneity and to ensure a sta-

tistical power of over 0.7, factoring in a representative

30% measurement error and a fold change >1.5 between

replicate observations, as reported in a recent simulation

study [32]. Samples were dissolved in dissolution buffer

(0.5 M triethylammonium bicarbonate/0.05% sodium

dodecyl sulphate), homogenized using the FastPrep sys-

tem (Savant Bio, Cedex, Fr) and then subjected to pulsed

probe sonication (Misonix, Farmingdale, NY, USA).

Lysates were centrifuged (16 000 g, 10 min, 4°C) and

supernatants were measured for protein content using

the Direct DetectTM Spectroscopy system (Merck Millipore,

Darmstadt, Germany) according to the manufacturer’s

instructions. From each lysate volume (adjusted to the

highest volume of 40 ll) containing 100 lg final protein

content was subjected to reduction, alkylation, trypsin

proteolysis and eight-plex isobaric tag for relative and

absolute quantitation (iTRAQ AbSciex, San Hose, CA,

USA) labelling per supplier’s specifications (ABSciex, San

Hose, CA, USA). Labelled peptides were pooled and frac-

tionated with high-pH reversed-phase (RP) chromatog-

raphy using the Waters, XBridge C8 column

(150 9 3 mm, 3.5 lm particle) with the Shimadzu LC-

20AD HPLC (Shimadzu, Kyoto, Japan). Each resulting

fraction was LC-MS analysed with low-pH RP capillary

chromatography (PepMap C18, 50 lm ID 9 50 cm L,

100 �A pore, 3.5 lm particle) and nanospray ionization

FT-MS (Ultimate 3000 UHPLC – LTQ-Velos Pro Orbitrap

Elite, Thermo Scientific, Bremen, DE) as reported previ-

ously [19,20,23] (Figure 1a).

Unprocessed raw files were submitted to Proteome

Discoverer 1.4 for target decoy searching with

SequestHT for tryptic peptides as reported by the

authors [19,20,23]. Quantification ratios were normal-

ized on the median value and log2 transformed. A pro-

tein was considered modulated in leptomeningeal

arteries from elderly subjects vs. young controls or

those affected by CAA type 1 relative to these from

young and elderly controls when its log2 ratio was

above or below �1 SD across all analysed samples per

category as reported previously [23].

Hierarchical clustering analysis visualized in heat-

map format was generated using Gene Cluster (version

3.0) and Java Treeview (version 1.1.6r4). MetaCore

(GeneGo, St. Joseph, MI, USA) and DAVID

(http://david.abcc.ncifcrf.gov) were applied to identify

prebuilt processed networks and gene ontology terms

over-represented in the modulated proteome. False dis-

covery rate (FDR) and Fisher’s exact corrected P-values

≤0.05 were considered significant.

Immunohistochemistry

The immunochemistry validation of key proteomic find-

ings was performed in all 19 subjects (young female con-

trols: n = 5, elderly female controls: n = 7, females with

CAA type 1: n = 7). Three sections of occipital cortex

from each of the cases were immunostained. After

dewaxing in xylene and rehydration through graded

alcohols, antigen retrieval was performed by immersing

slides in citrate buffer, microwaving on medium power

for 25 min and subsequently cooling. This was followed

by incubation in pepsin for 5 min (1 mg/ml 0.2 M HCl).

The tissue was blocked in 3% H2O2 and 15% goat

serum. Occipital cortex from each of the cases was incu-

bated in clusterin (Abcam: Cambridge, UK, ab42673,

rabbit polyclonal, dilution 1:500), or tissue inhibitor of

metalloproteinases 3 (TIMP3) (Abcam, Ab93637, rabbit

polyclonal, dilution 1:100) overnight at 4°C followed by

biotinylated goat anti-rabbit antibodies (Vector BA1000

dilution 1:200) and ABC peroxidase enzyme complex

(Vector PK4000, dilution 1:500). Reaction was detected

using diaminobenzidine with glucose oxidase enhance-

ment. Images were captured an Olympus: Southend-on-

Sea, Essex, UK, BX51 microscope fitted with Olympus

CC-12 colour microscope camera.

Double immunofluorescence was performed for Ab
and TIMP3. Prior to the antigen retrieval previously

described, pre-treatment was required which consisted

of 5 min in formic acid at 37°C. Tissue was blocked in

15% goat serum followed by incubation in primary

antibodies overnight at 4°C. Ab was detected using

mouse monoclonal anti-Ab IgG2b Clone 4G8, antibody

(BioLegend: London, UK, 800701; dilution 1:100). The

secondary antibody for Ab was goat anti-mouse IgG2b,

AlexaFluor 647 (A-21242), and for TIMP 3 and clus-

terin was goat anti-rabbit IgG AlexaFluor 594 (A-

27096). These were obtained from Thermo Fisher Sci-

entific and dilution 1:200. Images were captured and

© 2016 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd
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examined with a Leica SP8 confocal microscope. The

specificity of the immunohistochemistry staining was

confirmed by omitting the primary antibody.

Results

Quantitative proteomic analysis

The proteomic analysis resulted in the profiling of

5957 proteins (peptide FDR confidence ≥ 99%)

(Table S1). A total of 1364 proteins were differentially

expressed in arteries from elderly relative to young

subjects (Table S2), 280 in arteries from CAA cases rel-

ative to young controls (Table S3) and another 983 in

arteries from CAA cases relative to elderly controls

(Table S4). The hierarchical clustering analysis of dif-

ferentially expressed proteins between groups revealed

that leptomeningeal arteries derived from CAA patients

compared to those from young and elderly controls had

a distinct proteomic profile from arteries derived from

elderly compared to young subjects (Figure 1b).

In silico bioinformatics analysis showed that the im-

mune response/classical complement pathway (P = 5.0E-

11; 5.007E-2; 1.168E-10 in elderly vs. young controls;

Figure 1. (a) Experimental pipeline of proteomics experiment. (b) Heatmap of differentially expressed proteins in leptomeningeal arteries

of elderly controls compared to young controls, cerebral amyloid angiopathy (CAA) patients compared to young controls and CAA

patients compared to elderly controls.

© 2016 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd
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CAA vs. young controls; CAA vs. elderly controls

respectively) (Figure 2) and extracellular matrix remod-

elling (P = 3.3E-8; 6.349E-6; 2.317E-8 in elderly vs.

young controls; CAA vs. young controls; CAA vs.

elderly controls respectively) (Figure 3) were signifi-

cantly over-represented processes. For both pathways,

the expression levels of most proteins were found to

decrease in arteries from elderly vs. young controls,

whereas they increased in arteries from CAA patients

compared to young and elderly controls.

The expression of clusterin (apolipoprotein J) and

TIMP3 from the immune response/classical comple-

ment and the extracellular matrix remodelling path-

ways, respectively, were up-regulated in arteries from

patients with CAA compared to both young and

elderly controls [clusterin: iTRAQ mean log2 ratio

(SD) = 2.30 (0.45) and 2.87 (0.44) in CAA vs. young

and CAA vs. elderly controls respectively] [TIMP3:

iTRAQ mean log2 ratio (SD) = 1.63 (0.89) and 2.48

(0.90) in CAA vs. young and CAA vs. elderly controls

respectively].

Immunohistochemistry

Clusterin was found to co-localize with Ab in the occip-

ital cortex of CAA cases, but not in the young or

elderly controls (Figure 4). The pattern of expression

for the immunocytochemistry of TIMP3 was weak in

arteries from young controls, increased in elderly

controls and was strong in CAA patients (Figure 5).

TIMP3 and clusterin were found to co-localize with Ab
in the leptomeningeal vessels of the occipital cortex

from CAA cases (Figure 6).

Discussion

Our study showed that the global endophenotypic pro-

file of leptomeningeal arteries from elderly female

patients with severe CAA was different from that of

age-matched and young controls. The immune

response/classical complement and extracellular matrix

remodelling pathways were significantly enriched in

the differentially expressed proteome of arteries between

patients with CAA compared to young and elderly con-

trols. Most proteins participating in these pathways

were up-regulated in leptomeningeal arteries from

patients with CAA compared to these from controls,

possibly reflecting a pro-inflammatory response in

arteries affected by CAA, which could have in turn

triggered tissue remodelling processes. The inflamma-

tory profile of CAA is well characterized [33,34] and

previous studies have described an increased activation

of the complement system in cerebral amyloid plaques

as well as deposition of complement components in

CAA affected cerebral arteries [35–37]. Extracellular

matrix components can influence the deposition of Ab
thus contributing to Alzheimer’s disease progression

[38,39]. Conversely, Ab accumulation damages the

(a) (b) (c)

Figure 2. The immune response/classical complement pathway was significantly enriched in the differentially expressed proteome of

leptomeningeal arteries from elderly vs. young controls (P = 5.0E-11) (a), CAA patients compared to young controls (P = 5.007E-2) (b)

and cerebral amyloid angiopathy patients compared to elderly controls (P = 1.168E-10) (c).
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integrity of existing extracellular matrix, which affects

brain microvascular functions during the early stages

of Alzheimer’s disease [40–42].

The study results show that clusterin co-localizes

with Ab within the walls of leptomeningeal arteries

and its expression levels increase in leptomeningeal

(a) (b) (c)

Figure 3. The extracellular matrix remodelling pathway was significantly enriched in the differentially expressed proteome of

leptomeningeal arteries from elderly compared to young controls (P = 3.3E-8) (a), cerebral amyloid angiopathy (CAA) patients compared

to young controls (P = 6.349E-6) (b) and CAA patients compared to elderly controls (P = 2.317E-8) (c).

(a) (b) (c)

(d) (e) (f)

Figure 4. Immunohistochemistry of clusterin. DAB with haematoxylin counterstain in (a) young and (b) elderly controls and (c) cerebral

amyloid angiopathy (CAA). The intensity of immunostaining of clusterin is increased in the leptomeningeal vessels present in the sulci in

elderly control cases compared to young cases and in CAA compared to elderly control cases. Immunofluorescence for Ab and clusterin

in leptomeningeal arteries in CAA (d–e). Ab immunofluorescence (blue) in (d) is present in the whole thickness of the arterial wall in a

concentric manner; clusterin immunofluorescence (red) in (e) is also present throughout the thickness of the arterial wall; co-localization

(pink) of Ab and clusterin occupies most of the thickness of the arterial walls in (f). Scale bars: (a–c) = 100 lm/(d–f) = 50 lm.
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arteries from patients with CAA compared to those

from young and elderly controls. Clusterin

(apolipoprotein J or ApoJ) is a disulphide-linked het-

erodimeric glycoprotein that activates microglia, initi-

ating an inflammatory cascade [43]. Genome-wide

association studies of sporadic Alzheimer’s disease, in

which Ab accumulates both in cortical plaques and

CAA, have highlighted the importance of common

genetic variations in the gene encoding clusterin [44].

Experimental work suggests that clusterin regulates

Ab fibril formation [45] and plays a major role in the

clearance of Ab42–ApoJ complexes, via LRP2 [46–

48]. Although the predominant species of Ab in CAA

is Ab40, with progressive failure of perivascular clear-

ance of interstitial fluid, there is also accumulation of

Ab42 [49]. Clusterin appears to be sequestered with

Ab species in the vascular amyloid deposits in spo-

radic CAA, as well as in the white matter abnormali-

ties in cerebral autosomal dominant arteriopathy with

subcortical infarcts and leukoencephalopathy (CADA-

SIL) [50,51]. A recent study found a significant

positive correlation between clusterin concentration

and regional levels of insoluble Ab42 [52]. It is there-

fore possible that the up-regulation of clusterin

observed in the CAA arteries, is due to either entrap-

ment of the Ab–ApoJ complex in the perivascular

drainage pathways, or a compensatory up-regulation

of ApoJ to clear the excess Ab42 that cannot be elim-

inated normally.

In this study, we demonstrated that the expression

of TIMP3 in the brain is restricted to the walls of lep-

tomeningeal arteries and increases in CAA. Homeosta-

sis of the extracellular matrix in the brain is

maintained by the balanced action of matrix metallo-

proteinases that degrade extracellular matrix and by

tissue inhibitors of metalloproteinases (TIMP) proteins.

Human TIMP3 is a 25-kDa protein that contains

disulphide bonds and is expressed in normal central

nervous system [53]. In a study by Hoe et al. [54],

TIMP3 expression was found to increase in human

brains affected by Alzheimer’s disease (AD). Further-

more, this study showed that TIMP3 prevents a-

(a) (b) (c)

(d) (e) (f)

Figure 5. Immunohistochemistry of tissue inhibitor of metalloproteinases 3 (TIMP3) in leptomeningeal arteries. DAB with haematoxylin

counterstain in (a) young and (b) elderly controls and (c) cerebral amyloid angiopathy (CAA). The intensity of immunostaining of TIMP3

is increased in the leptomeningeal vessels present in the sulci of elderly control cases compared to young and in CAA cases compared to

elderly. Immunofluorescence for Ab and TIMP3 in leptomeningeal arteries in CAA (d–e). Ab immunofluorescence (blue) in (d) is present

in the whole thickness of the arterial wall in a concentric manner; TIMP3 immunofluorescence (red) in (e) is also present throughout the

thickness of the arterial wall; co-localization (pink) of Ab and TIMP3 occupies most of the thickness of the arterial walls, especially

concentrated in the tunica media, with less in the endothelium and outer layers of the wall (f). Scale bars: (a–c) = 100 lm/(d–
f) = 50 lm.
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cleavage of amyloid precursor protein (APP), whereas

it promotes b-cleavage of APP thus contributing to

elevated Ab levels in AD. TIMP3 preserves the integ-

rity of extracellular matrix in arteries as the absence

of TIMP3 in knock-out mice results in pathological

arterial vasodilation [55]. Our results showed that

expression of TIMP3 in the brain is restricted to the

walls of leptomeningeal, thus antagonistically target-

ing TIMP-3 could also facilitate perivascular drainage

of Ab. Examining this hypothesis was beyond the

scope of the present study and constitutes a future

objective.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Confocal microscopy images showing distribution of tissue inhibitor of metalloproteinases 3 (TIMP3) (blue) and Ab (red) in

leptomeningeal arteries from young (a–c) and elderly females (d–f) and patients with cerebral amyloid angiopathy (CAA) (g–i). Co-
localization of Ab and TIMP3 is observed in CAA, on transmission merged images (c–i). Images obtained with 920 objective. False

colour applied to channels.
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In conclusion, this proteomic study demonstrates

the activation of inflammatory and extracellular

matrix remodelling pathways in human lep-

tomeningeal arteries from CAA patients compared to

these from cognitively normal young and elderly con-

trols. Furthermore, we observed increased levels of

clusterin and TIMP3 in leptomeningeal arteries from

CAA patients compared to young and elderly controls

and co-localization of these two proteins with Ab in

the occipital cortex of the CAA cases. Future work

will test the hypothesis that clusterin and TIMP3

could facilitate perivascular clearance and represent

novel therapeutic targets for CAA.
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