90 research outputs found

    Inhibition of Angiogenesis Associated with Ovarian Cancer By Nanoparticles of Cerium Oxide (CIP)

    Get PDF
    The invention provides a method of treating ovarian cancer in a mammal, the method inhibits angiogenesis associated with the cancer and comprises the parenteral administration to the mammal of an effective amount of cerium oxide nanoparticles having a predominance of Ce+3

    Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    Get PDF
    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts

    Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    Get PDF
    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts

    Polymer coated cerium oxide nanoparticles as oxidoreductase-like catalysts

    Full text link
    Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, harmful molecules produced in oxidative stress asso-ciated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood. In this work, six polymer coated cerium oxide nanoparticles are prepared by associa-tion of 7.8 nm cerium oxide cores with two poly(sodium acrylate) and four poly(ethylene glycol) (PEG) grafted copolymers with different terminal or anchoring end groups, such as phosphonic acids. The superoxide dismutase-, catalase-, peroxidase- and oxidase-like catalytic activities of the coated nanoparticles were systematically studied. It is shown that the polymer coatings do not af-fect the superoxide dismutase-like, impair the catalase-like and oxidase-like and surprisingly im-proves peroxidase-like catalytic activities of cerium oxide nanoparticles. It is also demonstrated that the particles coated with the PEG-grafted copolymers perform better than the poly(acrylic acid) coated ones as oxidoreductase-like enzymes, a result that confirms the benefit of having phosphon-ic acids as anchoring groups at the particle surface.Comment: 23 pages, 8 figures, 3 table

    Mechanical properties of ceria nanorods and nanochains; The effect of dislocations, grain-boundaries and oriented attachment

    Get PDF
    We predict that the presence of extended defects can reduce the mechanical strength of a ceria nanorod by 70%. Conversely, the pristine material can deform near its theoretical strength limit. Specifically, atomistic models of ceria nanorods have been generated with full microstructure, including: growth direction, morphology, surface roughening (steps, edges, corners), point defects, dislocations and grain-boundaries. The models were then used to calculate the mechanical strength as a function of microstructure. Our simulations reveal that the compressive yield strengths of ceria nanorods, ca. 10 nm in diameter and without extended defects, are 46 and 36 GPa for rods oriented along [211] and [110] respectively, which represents almost 10% of the bulk elastic modulus and are associated with yield strains of about 0.09. Tensile yield strengths were calculated to be about 50% lower with associated yield strains of about 0.06. For both nanorods, plastic deformation was found to proceed via slip in the {001} plane with direction ã??110ã?? - a primary slip system for crystals with the fluorite structure. Dislocation evolution for the nanorod oriented along [110] was nucleated via a cerium vacancy present at the surface. A nanorod oriented along [321] and comprising twin-grain boundaries with {111} interfacial planes was calculated to have a yield strength of about 10 GPa (compression and tension) with the grain boundary providing the vehicle for plastic deformation, which slipped in the plane of the grain boundary, with an associated ã??110ã?? slip direction. We also predict, using a combination of atomistic simulation and DFT, that rutile-structured ceria is feasible when the crystal is placed under tension. The mechanical properties of nanochains, comprising individual ceria nanoparticles with oriented attachment and generated using simulated self-assembly, were found to be similar to those of the nanorod with grain-boundary. Images of the atom positions during tension and compression are shown, together with animations, revealing the mechanisms underpinning plastic deformation. For the nanochain, our simulations help further our understanding of how a crystallising ice front can be used to 'sculpt' ceria nanoparticles into nanorods via oriented attachment. © 2011 The Royal Society of Chemistry

    Nanoceria: A Rare-Earth Nanoparticle as a Novel Anti-Angiogenic Therapeutic Agent in Ovarian Cancer

    Get PDF
    Ovarian cancer (OvCa) is the fifth most common cause of death from all cancers among women in United Sates and the leading cause of death from gynecological malignancies. While most OvCa patients initially respond to surgical debulking and chemotherapy, 75% of patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with OvCa. In this context, we have developed and engineered Nanoceria (NCe), nanoparticles of cerium oxide, possessing anti-oxidant properties, to be used as a therapeutic agent in OvCa. We show for the first time that NCe significantly inhibited production of reactive oxygen species (ROS) in A2780 cells, attenuated growth factor (SDF1, HB-EGF, VEGF(165) and HGF) mediated cell migration and invasion of SKOV3 cells, without affecting the cell proliferation. NCe treatment also inhibited VEGF165 induced proliferation, capillary tube formation, activation of VEGFR2 and MMP2 in human umbilical vascular endothelial cells (HUVEC). NCe (0.1 mg/kg body weigh) treatment of A2780 ovarian cancer cells injected intra-peritoneally in nude mice showed significant reduction (p \u3c 0.002) in tumor growth accompanied by decreased tumor cell proliferation as evident from reduced tumor size and Ki67 staining. Accumulation of NCe was found in tumors isolated from treated group using transmission electron microscopy (TEM) and inductively coupled plasma mass spectroscopy (ICP-MS). Reduction of the tumor mass was accompanied by attenuation of angiogenesis, as observed by reduced CD31 staining and specific apoptosis of vascular endothelial cells. Collectively, these results indicate that cerium oxide based NCe is a novel nanoparticle that can potentially be used as an anti-angiogenic therapeutic agent in ovarian cancer

    Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse

    Get PDF
    Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation (RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice (postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such as AMD and DR

    Tuning The Properties Of Nanomaterials As Function Of Surface And Environment

    Get PDF
    Nanotechnology has shaped the research and development in various disciplines of science and technology by redefining the interdisciplinary research. It has put the materials science at the forefront of technology by allowing the researchers to engineer materials with properties ranging from electronics to biomedical by using materials as diverse as ceramics to just plain carbon. These exceptional properties are achieved by minimizing the dimension of particles in such smaller domains that the boundary between the individual atoms, ions or cluster of particles is very small. This results in a change in conventional properties of particles from continuum physics to quantum physics and hence the properties of nanoparticles can be tuned based upon their size, shape and dimensionality. One of the most apparent changes upon decreasing the particle size is the increase in surface area to volume ratio. Thus nanoparticles possess greater tendency to interact with the environment in which they are present and similarly the environment can affect the properties of nanomaterials. The environment here is described as the immediate solid, liquid or gaseous material in immediate contact with the external surface of the nanoparticles. In order to control the physico-chemical properties of nanoparticles it is important to control the surface characteristics of nanoparticles and its immediate environment. The current thesis emphasizes the role of tuning the surface of nanoparticles and/or the environment around the nanoparticles to control their properties

    Hierarchical Assembly Of Inorganic Nanostructure Building Blocks To Octahedral Superstructures - A True Template-Free Self-Assembly

    No full text
    A room temperature, template-free, wet chemical synthesis of ceria nanoparticles and their long term ageing characteristics are reported. High resolution transmission electron microscopy and UV-visible spectroscopy techniques are used to observe the variation in size, structure and oxidation state, respectively as a function of time. The morphology variation and the hierarchical assembly (octahedral superstructure) of nanostructures are imputed to the inherent structural aspects of cerium oxide. It is hypothesized that the 3-5 nm individual building blocks will undergo an intra-agglomerate re-orientation to attain the low energy configuration. This communication also emphasizes the need for long term ageing studies of nanomaterials in various solvents for multiple functionalities. © IOP Publishing Ltd
    • …
    corecore