258 research outputs found

    MiMiR - an integrated platform for microarray data sharing, mining and analysis

    Get PDF
    Background: Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data.Results: A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package.Conclusion: The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies

    Spatial transcriptomics identifies spatially dysregulated expression of <i>GRM3</i> and <i>USP47</i> in amyotrophic lateral sclerosis

    Get PDF
    Research Funding Medical Research Council. Grant Number: MR/L016400/1 Biogen Academy of Medical Sciences. Grant Number: 210JMG 3102 R45620 MND Scotland Engineering and Physical Sciences Research CouncilPeer reviewedPublisher PD

    Identification of Ceruloplasmin as a Gene that Affects Susceptibility to Glomerulonephritis Through Macrophage Function

    Get PDF
    Crescentic glomerulonephritis (Crgn) is a complex disorder where macrophage activity and infiltration are significant effector causes. In previous linkage studies using the uniquely susceptible Wistar Kyoto (WKY) rat strain, we have identified multiple crescentic glomerulonephritis QTL (Crgn) and positionally cloned genes underlying Crgn1 and Crgn2, which accounted for 40% of total variance in glomerular inflammation. Here, we have generated a backcross (BC) population (n = 166) where Crgn1 and Crgn2 were genetically fixed and found significant linkage to glomerular crescents on chromosome 2 (Crgn8, LOD = 3.8). Fine mapping analysis by integration with genome-wide expression QTLs (eQTLs) from the same BC population identified ceruloplasmin (Cp) as a positional eQTL in macrophages but not in serum. Liquid chromatography-tandem mass spectrometry confirmed Cp as a protein QTL in rat macrophages. WKY macrophages overexpress Cp and its downregulation by RNA interference decreases markers of glomerular proinflammatory macrophage activation. Similarly, short incubation with Cp results in a strain-dependent macrophage polarization in the rat. These results suggest that genetically determined Cp levels can alter susceptibility to Crgn through macrophage function and propose a new role for Cp in early macrophage activation

    EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management.</p> <p>Results</p> <p>EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms.</p> <p>Conclusion</p> <p>EMAAS enables users to track and perform microarray data management and analysis tasks through a single easy-to-use web application. The system architecture is flexible and scalable to allow new array types, analysis algorithms and tools to be added with relative ease and to cope with large increases in data volume.</p

    Successful Long-Term Preservation of Rat Sperm by Freeze-Drying

    Get PDF
    Background: Freeze-drying sperm has been developed as a new preservation method where liquid nitrogen is no longer necessary. An advantage of freeze-drying sperm is that it can be stored at 4uC and transported at room temperature. Although the successful freeze-drying of sperm has been reported in a number of animals, the possibility of long-term preservation using this method has not yet been studied. Methodology/Principal Findings: Offspring were obtained from oocytes fertilized with rat epididymal sperm freeze-dried using a solution containing 10 mM Tris and 1 mM EDTA adjusted to pH 8.0. Tolerance of testicular sperm to freeze-drying was increased by pre-treatment with diamide. Offspring with normal fertility were obtained from oocytes fertilized with freeze-dried epididymal sperm stored at 4uC for 5 years. Conclusions and Significance: Sperm with –SS – cross-linking in the thiol-disulfide of their protamine were highly tolerant to freeze-drying, and the fertility of freeze-dried sperm was maintained for 5 years without deterioration. This is the first report to demonstrate the successful freeze-drying of sperm using a new and simple method for long-term preservation

    Copy number, linkage disequilibrium and disease association in the FCGR locus.

    Get PDF
    The response of a leukocyte to immune complexes (ICs) is modulated by receptors for the Fc region of IgG (FcgammaRs), and alterations in their affinity or function have been associated with risk of autoimmune diseases, including systemic lupus erythematosus (SLE). The low-affinity FcgammaR genomic locus is complex, containing regions of copy number variation (CNV) which can alter receptor expression and leukocyte responses to IgG. Combined paralogue ratio tests (PRTs) were used to distinguish three intervals within the FCGR locus which undergo CNV, and to determine FCGR gene copy number (CN). There were significant differences in FCGR3B and FCGR3A CNV profiles between Caucasian, East Asian and Kenyan populations. A previously noted association of low FCGR3B CN with SLE in Caucasians was supported [OR = 1.57 (1.08-2.27), P = 0.018], and replicated in Chinese [OR = 1.65 (1.25-2.18), P = 4 x 10(-4)]. There was no association of FCGR3B CNV with vasculitis, nor with malarial or bacterial infection. Linkage disequilibrium (LD) between multi-allelic FCGR3B CNV and SLE-associated SNPs in the FCGR locus was defined for the first time. Despite LD between FCGR3B CNV and a variant in FcgammaRIIB (I232T) which abolishes inhibitory function, both reduced CN of FCGR3B and homozygosity of the FcgammaRIIB-232T allele were individually strongly associated with SLE risk. Thus CN of FCGR3B, which controls IC responses and uptake by neutrophils, and variations in FCGR2B, which controls factors such as antibody production and macrophage activation, are important in SLE pathogenesis. Further interpretations of contributions to pathogenesis by FcgammaRs must be made in the context of LD involving CNV regions

    Accounting for uncertainty when assessing association between copy number and disease: a latent class model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) may play an important role in disease risk by altering dosage of genes and other regulatory elements, which may have functional and, ultimately, phenotypic consequences. Therefore, determining whether a CNV is associated or not with a given disease might be relevant in understanding the genesis and progression of human diseases. Current stage technology give CNV probe signal from which copy number status is inferred. Incorporating uncertainty of CNV calling in the statistical analysis is therefore a highly important aspect. In this paper, we present a framework for assessing association between CNVs and disease in case-control studies where uncertainty is taken into account. We also indicate how to use the model to analyze continuous traits and adjust for confounding covariates.</p> <p>Results</p> <p>Through simulation studies, we show that our method outperforms other simple methods based on inferring the underlying CNV and assessing association using regular tests that do not propagate call uncertainty. We apply the method to a real data set in a controlled MLPA experiment showing good results. The methodology is also extended to illustrate how to analyze aCGH data.</p> <p>Conclusion</p> <p>We demonstrate that our method is robust and achieves maximal theoretical power since it accommodates uncertainty when copy number status are inferred. We have made <monospace>R</monospace> functions freely available.</p

    Allele-Specific Gene Expression Is Widespread Across the Genome and Biological Processes

    Get PDF
    Allelic specific gene expression (ASGE) appears to be an important factor in human phenotypic variability and as a consequence, for the development of complex traits and diseases. In order to study ASGE across the human genome, we have performed a study in which genotyping was coupled with an analysis of ASGE by screening 11,500 SNPs using the Mapping 10 K Array to identify differential allelic expression. We found that from the 5,133 SNPs that were suitable for analysis (heterozygous in our sample and expressed in peripheral blood mononuclear cells), 2,934 (57%) SNPs had differential allelic expression. Such SNPs were equally distributed along human chromosomes and biological processes. We validated the presence or absence of ASGE in 18 out 20 SNPs (90%) randomly selected by real time PCR in 48 human subjects. In addition, we observed that SNPs close to -but not included in- segmental duplications had increased levels of ASGE. Finally, we found that transcripts of unknown function or non-coding RNAs, also display ASGE: from a total of 2,308 intronic SNPs, 1510 (65%) SNPs underwent differential allelic expression. In summary, ASGE is a widespread mechanism in the human genome whose regulation seems to be far more complex than expected

    Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    Get PDF
    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system

    Consequences of perinatal treatment with l-arginine and antioxidants for the renal transcriptome in spontaneously hypertensive rats

    Get PDF
    Treating spontaneously hypertensive rats (SHR) with l-arginine, taurine, and vitamins C and E (ATCE) during nephrogenesis (2 weeks before to 4 weeks after birth) persistently lowers blood pressure. Hypothetically, differential gene expression in kidney of SHR vs. normotensive Wistar–Kyoto rats (WKY) is partially corrected by maternal ATCE in SHR. Differential gene expression in 2-days, 2-weeks, and 48-week-old rats was studied using oligonucleotide chips. Transcription factor binding sites (TFBS) of differentially expressed genes were analyzed in silico. Differential gene expression varied between SHR+ATCE and SHR, suggesting both direct and indirect effects; but, few genes were modulated toward WKY level and there was little overlap between ages. TFBS analysis suggests less Elk-1-driven gene transcription in both WKY and SHR+ATCE vs. SHR at 2 days and 2 weeks. Concluding, in SHR, persistent antihypertensive effects of maternal ATCE are not primarily due to persistent corrective transcription. Less Elk-1-driven transcription at 2 days and 2 weeks may be involved
    corecore