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ABSTRACT Crescentic glomerulonephtritis (Crgn) is a complex disorder where macrophage activity and infiltration are significant effector
causes. In previous linkage studies using the uniquely susceptible Wistar Kyoto (WKY) rat strain, we have identified multiple crescentic
glomerulonephritis QTL (Crgn) and positionally cloned genes underlying Crgn7 and Crgn2, which accounted for 40% of total variance in
glomerular inflammation. Here, we have generated a backcross (BC) population (n = 166) where Crgn1 and Crgn2 were genetically fixed and
found significant linkage to glomerular crescents on chromosome 2 (Crgn8, LOD = 3.8). Fine mapping analysis by integration with genome-
wide expression QTLs (eQTLs) from the same BC population identified ceruloplasmin (Cp) as a positional eQTL in macrophages but not in
serum. Liquid chromatography-tandem mass spectrometry confirmed Cp as a protein QTL in rat macrophages. WKY macrophages over-
express Cp and its downregulation by RNA interference decreases markers of glomerular proinflammatory macrophage activation. Similarly,
short incubation with Cp results in a strain-dependent macrophage polarization in the rat. These results suggest that genetically determined
Cp levels can alter susceptibility to Crgn through macrophage function and propose a new role for Cp in early macrophage activation.

KEYWORDS QTL; eQTL; fine mapping; glomerulonephritis; positional cloning; macrophages; Genetics of Immunity

LOMERULONEPHRITIS is often caused by immunecomplex-
mediated inflammatory damage to the kidney. Recent
genome-wide association studies (GWAS) revealed a strong
genetic component with multiple loci, but the cellular mech-
anisms through which they modulate disease severity re-
main unknown (Gharavi et al. 2011; Lyons et al. 2012;
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Chung et al. 2014). The model of crescentic glomerulone-
phritis (Crgn) in the Wistar Kyoto (WKY) rat is a highly re-
producible model that histologically resembles human focal
and segmental necrotizing glomerulonephritis with crescent
formation, as seen in antineutrophil cytoplasmic autoanti-
bodies (ANCA)-associated vasculitis, lupus nephritis, and
anti-glomerular basement membrane (anti-GBM) disease
(Cook et al. 1999; Tam et al. 1999; Aitman et al. 2006;
Behmoaras et al. 2008; Little et al. 2009; Smith et al. 2010;
Reynolds et al. 2012). The WKY rat is uniquely susceptible to
macrophage-dependent Crgn with crescent formation, mac-
rophage infiltration, and proteinuria, only 10 days following
the injection of nephrotoxic serum (NTS), a rabbit anti-rat
GBM serum. Although this strain develops severe nephro-
toxic nephritis (NTN) and progresses toward renal failure,
another inbred strain, the Lewis (LEW) rat, which shares
the same MHC haplotype, is resistant to NTN. We therefore
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took advantage of the [WKY X LEW] parental and segregating
crosses to study the genetic components of Crgn in an MHC-
independent way and identified susceptibility genes and cel-
lular mechanisms underlying glomerular inflammation in
Crgn (Aitman et al. 2006; Behmoaras et al. 2008, 2010;
Deplano et al. 2013).

Macrophages are effector cells in human Crgn (Neale et al.
1988; Nikolic-Paterson and Atkins 2001; Kluth et al. 2004;
Rees 2010), and our studies aiming to dissect the polygenic
complex architecture of Crgn in the WKY rat led to the iden-
tification of genes that cause Crgn through regulation of mac-
rophage activation and infiltration (Aitman et al. 2006;
Behmoaras et al. 2008, 2010). The first genome-wide linkage
analysis identified seven Crgn quantitative trait loci (Aitman
et al. 2006) (QTL, Crgnl-7) with Crgnl on chromosome
13 and Crgn2 on chromosome 16, both with LOD > 8, in-
dicating very significant association with Crgn phenotypes.
We have generated reciprocal congenic strains where Crgnl
and Crgn2 were introgressed into the genetic background of
each strain (Behmoaras et al. 2010; D’Souza et al. 2013).
Bone marrow transplantation experiments have confirmed
that Crgnl-7 contribute to glomerular crescent formation
through macrophage activation (Behmoaras et al. 2010).

Furthermore, positional cloning studies led to the identi-
fication of variants in Fcgr3 (Aitman et al. 2006) (Crgnl) and
JunD (Behmoaras et al. 2008) (Crgn2) loci explaining 40% of
the susceptibility to Crgn (Behmoaras et al. 2010) through
macrophage function (Page et al. 2012; Deplano et al. 2013;
Hull et al. 2013). Complementary to linkage studies, expres-
sion QTL (eQTL) approaches using macrophages from a seg-
regating population from WKY and LEW rats identified genes
that could also be targeted and reduce the severity of NTN in
the WKY rat (Kang et al. 2014). Despite all these positional
cloning and QTL studies, the remaining NTN susceptibility
loci account for 60% of glomerular crescent formation, and
the biological mechanisms through which they regulate Crgn
remain to be elucidated.

In this study, we undertook a genetic approach aiming to fix
the most significant Crgn QTL (Crgnl and Crgn2; LOD > 8)
such that recombination will occur outside these genomic
loci. We performed a restrictive genome-wide linkage analy-
sis in a backcross (BC) population using single nucleo-
tide polymorphisms (SNPs) derived from a custom-designed
rat-specific RATDIV array (Rat Genome et al. 2013) and iden-
tified significant linkage to glomerular crescents on chromo-
some 2 (Crgn8, LOD = 3.8). We then applied a fine mapping
strategy using integrative approaches combining genome-
wide eQTLs in macrophages from the same population with
quantitative trait transcript (QTT) analysis (Passador-Gurgel
et al. 2007) focusing on the 1-LOD drop interval candidates.
This prioritized ceruloplasmin (Cp), as the most significantly
Crgn-associated transcript in macrophages, which is also ex-
pression and protein QTL. NTN-susceptible WKY rat macro-
phages overexpress Cp messenger RNA (mRNA) and protein
levels and its knockdown leads to decreased macrophage-
derived proinflammatory markers in Crgn. In keeping with this,
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short-time incubation of macrophages with Cp results in a
genotype-dependent macrophage activation. RNA interfer-
ence (RNAIi) and Cp-stimulation experiments identified Tnfa,
111b, Mmp9, and Mt1 as Cp targets in macrophages, suggesting
that targeting macrophage Cp expression could be important
in attenuating glomerular inflammation in Crgn.

These results suggest that genetically determined Cp levels
are associated with glomerulonephritis through macrophage
function in the rat. They also highlight the previously un-
appreciated importance of Cp-mediated pathways in early
macrophage activation, which is characterized by modulation
of a subset of transcriptional markers of cell polarization. The
exact mechanisms through which Cp regulates transcriptional
programming of macrophages will help understanding the
plasticity of these cells in inflammatory diseases.

Materials and Methods
Animals

Wistar Kyoto (WKY/NCrl) and Lewis (LEW/Crl) rats were
purchased from Charles River, United Kingdom. A total of
166 BC rats were produced by breeding LEW rats with the
bicongenic WKY.LCrgn1,2 as described in Figure 1. The F;
animals were backcrossed to the parental bicongenic WKY
rats to obtain the BC rats. All procedures were performed
in accordance with the United Kingdom Animals (Scientific
Procedures) Act, 1986.

NTN phenotypes in BC rats

NTN was induced in 12-week-old male BC rats by intravenous
injection of 0.1 ml of NTS. Nine days later, urine was collected
by placing the rats in metabolic cages for 24 hr with free access
to food and water. Proteinuria was determined by the sulpho-
salicylic acid method. Ten days after NTN induction, rats were
culled and kidneys were formalin fixed and paraffin embedded.
To quantify the degree of histological injury in NTN, 4-pm
formalin-fixed paraffin-embedded kidney sections were
stained with H&E and periodic acid-Schiff. A total of
100 consecutive glomeruli were assessed in a blinded man-
ner, and the number of severely crescentic glomeruli was
reported as a percentage of total glomeruli examined. For
macrophage infiltration, formalin-fixed paraffin-embedded
kidney sections were stained with mouse monoclonal anti-
body to ED-1 (Serotec, Oxford, United Kingdom), followed
by an HRP-labeled anti-mouse polymer development system
(EnVision+ System-HRP, K4007, Dako, United Kingdom).
The cellular infiltrate in 10 consecutive glomeruli was quan-
tified using automated image analysis software (ImagePro
Plus, Media Cybernetics, Bethesda, MD) and expressed as a
percentage of total glomerular cross-sectional area.

Genotyping and SNP filtering

The genotyping protocol is described in Kang et al. (2014).
Briefly, total DNA was extracted from BC spleen samples by
standard phenol-chloroform protocols. The custom-designed
rat-specific RATDIV array (Rat Genome et al. 2013) was used
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for detection of ~500,000 genome-wide single nucleotide
polymorphisms (SNPs). For genotyping, genomic DNA was
subjected to standard Affymetrix SNP6.0 GeneChip pro-
tocol according to the manufacturer’s instructions. A total of
250 ng DNA was used for Nspl and StyI digestions. Genotype
calling was performed using apt-probeset-genotype from the
Affymetrix Power Tools apt-1.14.3 with the optimized filter
settings for the RATDIV array. For SNP filtering, we applied
the following settings: FLD > 4, NO of AA calls >9/AB >3/
BB >9, >99% call rate per SNP and hetSO = 0 and revealed
274,339 high-quality SNPs.

For the vast majority of SNPs, the frequency of the LEW
allele is ~25%, consistent with the chosen BC strategy. SNPs
where the frequency differs significantly from 25% reflect
either congenic regions (Crgnl and Crgn2) or those that
showed genotype calling failure, which were discarded from
eQTL and QTL analysis. The imputation strategy is previously
described in Kang et al. (2014). The WKY and LEW whole-
genome sequence data (Illumina HiSequation 2000; >10X
coverage for both strains) (Atanur et al. 2013) was then used

GeneChip Rat 1.0 ST Array

probe intensity.

Whole genome
sequence of WKY
and LEW rats

&

to define the WKY and LEW alleles at each individual SNP,
resulting in 278,124 SNPs that can discriminate both alleles.
SNPs where the BRLMM clustering was not consistent with
the breeding strategy (heterozygous frequency <0.35 or
>0.65, presence of Lewis homozygous genotypes) were
discarded, leaving 242,252 SNPs. Missing genotypes were
then imputed using fastPhase with the two founder haplo-
types as previously described (Kang et al. 2014). The total
number of SNPs for QTL and eQTL analyses were 1974 fol-
lowing removal of those in complete linkage disequilibrium
r2=1).

NTN QTL and eQTL mapping

NTN QTL mapping was performed for each phenotype sepa-
rately by linkage analysis. LOD scores were obtained using R
qtl package (scanone function) and significance threshold was
assessed based on 1000 permutations. Boundaries of the
Crgn8 QTL were obtained by taking the 1-LOD drop interval
around the linkage peak. For each gene in the 1-LOD drop
interval, we then tested for correlations between gene
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expression and percentage of glomerular crescents, using lin-
ear models.

The eQTL mapping was performed as previously described
(Kang et al. 2014) using ESS++ (Petretto et al. 2010; Bottolo
et al. 2011). Fixed effects on each individual were added as
covariates in the variable selection process to account for
potential outliers or genotyping errors. A transcript was des-
ignated as an eQTL when it mapped with a probability of
=0.8 to a genomic region of <10 Mb. When multiple SNPs
are located within the 10-Mb windows, we refer to the SNP
with the highest marginal probability in that region as the
eQTL.

Serum Cp quantity and activity measurements

Ceruloplasmin activity was measured in the serum of WKY and
LEW rats before and after NTN induction using a colorimetric
assay based on substrate oxidation (Sigma, St. Louis, MO,
catalogue no. MAK177). Ceruloplasmin quantity was ana-
lyzed using the Rat Ceruloplasmin assay kit (AssayPro, St.
Charles, MO, catalogue no. ERC4001-1) according to the
manufacturer’s instructions.

Cell culture, reagents, RNAI, and quantitative RT- PCR

Bone marrow-derived macrophages (BMDMs) were isolated
and characterized as described previously (Lai et al. 2014;
Behmoaras et al. 2015). Bone marrow cells were allowed
to differentiate in Dulbecco’s modified Eagle’s medium
(DMEM) (Thermo Fisher Scientific, Waltham, MA) contain-
ing 25 mM HEPES buffer (Sigma), 25% 1.929-conditioned
medium, 25% fetal bovine serum (Labtech, batch 40811),
penicillin (100 units/ml; Thermo Fisher Scientific) and strep-
tomycin (100 pg/ml; Thermo Fisher Scientific), and cultured
for 5 days in Petri dishes (Nunc). Purified ceruloplasmin was
purchased from Enzo Life Sciences (Farmingdale, NY, cata-
logue no. ALX-200-089-M001).

For quantitative RT-PCR (qRT-PCR), total RNA was
extracted from BMDMs using the TRIzol reagent (Invitro-
gen, Carlsbad, CA) according to the manufacturer’s instruc-
tions, and complementary DNA (cDNA) was synthesized
using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). A
total of 10 ng cDNA for each sample was used. All qRT-
PCRs were performed on a ViaA 7 Real-Time PCR System
(Life Technologies, Carlsbad, CA) using Brilliant IT SYBR
Green QPCR Master Mix (Agilent, Santa Clara, CA), fol-
lowed by ViiA 7 RUO Software for the determination of Ct
values. Results were analyzed using the comparative Ct
method, and each sample was normalized to the reference
mRNA of the Hprt gene, to account for any cDNA loading
differences.

For RNAi, WKY BMDMs were replated in six-well plates
(1 X 106 cells per well) for an overnight period and trans-
fected for 48 hr with On-Target Plus for human rat Cp
(100 nM, Dharmacon SMART pool) or nontargeting small
interfering RNA (siRNA) pool as the scrambled control siRNA
using Dharmafect 1 (1:50, Dharmacon, Lafayette, CO) as
a transfection reagent in Opti-MEM medium (Invitrogen).
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Primers and the siRNA sequence information are available
upon request.

Western blotting, ELISA, and Cp immunohistochemistry

For Western blot analysis, renal cortex tissue of day-10 ne-
phritic kidneys from WKY and LEW rats were homogenized
and lysed in RIPA buffer (Santa Cruz Biotechnology, Dallas,
TX) with protease inhibitors, mixed with 2X Laemmli sample
buffer (Bio-Rad), resolved by SDS/PAGE, transferred to poly-
vinylidene difluoride membranes, and subjected to immuno-
blotting with either rabbit monoclonal anti-ceruloplasmin
(ab131220, Abcam, Cambridge, United Kingdom) or mouse
monoclonal anti-B-actin (C4; Santa Cruz Biotechnology).
Following incubation with secondary antibodies, the probed
proteins were detected using SuperSignal West Femto
Chemiluminescent Substrate (Thermo Fisher Scientific).
For ELISA, TNFa (BD Biosciences, Billerica, MA) and IL-10
(Abcam) levels in BMDM culture supernatants were quanti-
fied using sandwich ELISA, according to the manufacturer’s
instructions. Cp immunohistochemistry was performed on
paraffin-embedded material sections with mouse anti-Cp
(sc-135866, Santa Cruz Biotechnology) and developed using
EnVision+ System-HRP (K4007, Dako). Pictures were taken
by QImaging Retiga 2000R Scientific CCD camera using
Image-Pro Plus version 7.0 software.

Microarray expression profiling and
quantitative proteomics

Sample preparation, microarray profiling, and data analysis
for eQTL mapping in BC BMDMs were previously described in
detail (Kang et al. 2014). For the parental strain BMDM
microarrays, total RNA was extracted from WKY and LEW
BMDMs (four biological replicates per strain; basal, 2-, 4-,
and 8-hr LPS stimulation at 100 ng/ml) using the TRIzol
method and purified using RNeasy Plus spin columns (Qiagen).
A total of 100 ng of RNA was amplified, labeled, and hy-
bridized to Rat Gene 1.0 ST arrays (Affymetrix, Santa
Clara, CA) using the Ambion WT Expression Kit (Life Tech-
nologies) as per manufacturer instructions. CEL intensity files
were produced using GeneChip Operating Software version
1.4 (Affymetrix, Santa Clara, CA) and quality tested using the
Affymetrix Expression Console v1.1.2. Probe-level data were
normalized using robust multichip average (RMA) (Bolstad
et al. 2003; Irizarry et al. 2003). A custom definition file was
created using up-to-date probe information (Dai et al. 2005)
and filtered to exclude probes containing the 2,520,602 sin-
gle nucleotide polymorphisms present between the WKY and
LEW genomes. The moderated t-test with 40,000 permutations
implemented in Statistical Analysis of Microarrays (SAM) ver-
sion 3.0 was used to identify differentially expressed genes at a
false discovery rate (FDR) threshold of 5% and timecourse anal-
ysis was performed using EDGE with 40,000 permutations and
a 5% FDR threshold.

Detailed quantitative proteomics protocols by mass spec-
trometry in WKY and LEW BMDMs were previously described
elsewhere (Rotival et al. 2015). Briefly, whole peptide dried



extracts were resuspended in 14 wl of reconstitution buffer
(0.1% trifluoroacetic acid containing 20 nm of an enolase
digest). A total of 5 pl (peptides) was loaded in a liquid
chromatography-tandem mass spectrometry (LC-MS/MS) sys-
tem (nanol.C, Ultimate 3000 and LTQ-Orbitrap Velos mass
spectrometer, Thermo Scientific). Raw data files were uploaded
onto Progenesis QI for Proteomics software (Nonlinear Dy-
namics, 2014, version: 2.0.5387.52102). Chromatographic
alignment (with additional manual manipulation), data nor-
malization, and peak picking were performed by Progenesis
QI. Mascot server (version 2.5.0) was used for peptide/protein
identification as searched against the Uniprot Swissprot rattus
norvegicus FASTA (downloaded June 6, 2014) which con-
tained 7914 sequences.

Data availability

WKY and LEW BMDM [basal and lipopolysaccharide (LPS)]
microarray data set was deposited to ArrayExpress (accession
no. E-MEXP-3469, https://www.ebi.ac.uk/arrayexpress/
experiments/E-MEXP-3469/). Microarrays used for eQTL
analysis including genotypes and phenotypes were also depos-
ited to ArrayExpress (accession no. E-MTAB-2719, http://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-2719/). For
the proteomics data set, results from Mascot searches were
deposited into the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE part-
ner repository with the data set identifier project accession
PXD001269 and project DOI: 10.6019/PXD001269.

Statistical analysis

Data are represented as mean * 1 SD. All statistical analyses
involving comparison between more than two groups were
performed by ANOVA followed by Tukey’s multiple compar-
ison post-test.

Results
Genome-wide linkage analysis in bicongenic rats

In previous studies, we have identified genes underlying
Crgnl and Crgn2 in the WKY NTN model. To allow locus-
restrictive recombination, we took advantage of the previ-
ously generated bicongenic rats on a WKY background with
introgression of LEW Crgnl and Crgn2 (Behmoaras et al.
2010). The F; rats between LEW and WKY.LCrgnl,2 rats
were backcrossed to the parental bicongenic to allow recom-
bination to occur outside Crgnl and Crgn2 loci (Figure 1A).
NTN phenotypes such as percentage of glomerular crescents
and macrophage infiltration as well as proteinuria were used
in genome-wide linkage analysis (Figure 1B). As macro-
phages are the major drivers in crescentic glomerulonephritis
(Nikolic-Paterson and Atkins 2001; Isome et al. 2004; Wang
and Harris 2011), macrophage eQTLs from the same BC pop-
ulation were mapped and used for fine mapping together
with whole-genome sequencing data (Figure 1B) available
for parental WKY and LEW strains (Atanur et al. 2013).

Identification of ceruloplasmin as a positional candidate
for macrophage function in Crgn

The BC population showed a wide range of quantitative
phenotypes with a strong correlation between glomerular
crescents and proteinuria (Figure 2A), suggesting that loci
outside Crgnl and Crgn2 contribute significantly to disease
severity. As expected, genome-wide linkage analysis per-
formed with SNPs on the original F, population derived from
WKY and LEW rats identified Crgnl and Crgn2 with LOD >
6 (Figure 2B). When linkage analysis was performed in the
BC population displaying genetically fixed Crgnl and Crgn2,
this led to the identification of Crgn8 on chromosome
2 (LOD = 3.8, P < 0.012 following 1000 permutations).
Macrophage transcript expression of all genes located within
the 1-LOD drop interval (41.6-112 Mb, Figure 2C) was tested
for correlation with percentage of glomerular crescents by
QTT analysis (Passador-Gurgel et al. 2007) (Figure 2D).
Among all annotated genes within the 1-LOD drop, cerulo-
plasmin (Cp) expression in macrophages showed the most
significant correlation with percentage of glomerular cres-
cents (Figure 2D and Table 1). Cp is strongly cis-regulated
(R?2 =0.4,P = 2.59 X 10723) and is one of three cis-eQTL
genes (together with C6 and Pde7a) mapped with high con-
fidence (marginal probability > 0.8) within the peak of
linkage. Of these genes, macrophage Cp is the only tran-
script that also shows a significant correlation with percent-
age of glomerular crescents (Table 1). Taken together, these
results suggested that macrophage Cp expression could
partly explain susceptibility to Crgn. We thus hypothesized
that genetically determined Cp levels could be essential for
transcriptional activation in macrophages.

Ceruloplasmin is a macrophage expression and
protein QTL

To confirm that Cp is an eQTL, we cultured BMDMs from
WKY and LEW rats and measured Cp mRNA by qRT-PCR
(Figure 3A). This analysis confirmed Cp as a cis-eQTL. This
was further consolidated in a microarray analysis using WKY
and LEW BMDMs in basal and LPS-stimulated (2, 4, and 8 hr)
states (Figure 3A). Quantitative proteomics by LC-MS/MS in
WKY and LEW BMDMs showed that the difference in mRNA
levels is further associated with a significant difference in
protein levels (Figure 3A), suggesting that Cp is a protein
QTL in primary rat macrophages. Because ceruloplasmin is
an acute-phase plasma protein made principally by hepato-
cytes and activated monocytes/macrophages (Yang et al.
1986; Vassiliev et al. 2005), we investigated whether the
genetic control of its protein levels and activity was conserved
in the serum. Interestingly, neither Cp quantity nor activity in
the serum was significantly different between WKY and LEW
strains (Figure 3B), suggesting that the genetic control of
macrophage Cp levels could partly explain the pathophysiol-
ogy of NTN in the rat. Supporting the latter, Cp-positive
macrophages were detected by immunohistochemistry in
the glomeruli and interstitium of nephritic WKY kidneys
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Figure 2 Susceptibility to nephrotoxic nephritis (NTN) when Crgn1 and Crgn2 are genetically fixed. (A) Percentage of glomerular crescents, ED-1+
macrophages per glomerular cross-section and proteinuria (milligrams/24 hr) in the BC population. Pearson correlation between percentage of
glomerular crescents and proteinuria (milligrams/24 hr). (B) Genome-wide linkage of glomerulonephritis-related phenotypes in F, (top panel) and BC
(bottom panel). LOD scores for each phenotypes are represented (red, percentage of glomerular crescents; blue, proteinuria; and green, macrophage
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in black, blue, and green, respectively. The 1-LOD drop intervals are shown in red. (D) Volcano plot showing quantitative trait transcript (QTT) analysis
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Table 1 eQTLs within the 1-LOD drop interval on Crgn8

Gene Best SNP position (bp) MP  Gene start (bp) Gene end (bp) R? P R (crescents)  P,qj (crescents)
c6 52574178 0.95 53691288 53764541 0.53 9.85x 10733 -0.20 0.08
D3ZNI5_RAT 89758582 0.49 95174024 95176430 043 218 X 1072 0.23 0.03
Cp 95386102 0.91 105086278 105145860 040 259 x 1023 0.21 0.04
Fabp4 95386102 0.55 93536110 93540771 024 137 X 10712 -0.13 0.47
Carl3 106915624 0.73 88271908 88309336 0.27 6.07 x 1071° 0.15 0.40
Ptger4 61068139 0.51 54423275 54434520 0.21 1.41 X 10~ 0.16 0.29
Znf622 61068139 0.35 77369798 77585703 0.10 5.26 X 1079 -0.14 0.46
RGD1310081 57201899 0.67 57835595 57879494 0.10 3.34 x 1070® 0.14 0.47
Car2 82416512 0.18 88077084 88092256 0.10 3.86 x 10796 —-0.09 0.85
D3ZK35_RAT 56704838 0.56 57781798 57811897 021 147 x 10" 0.19 0.09
Zp458 109800573 0.34 86170500 86179868 0.12 1.07 x 1079 —0.06 0.85
Pde7a 106915624 0.95 104339910 104429820 032 578 x 10718 0.15 0.45
Snx16 104467862 0.28 93274839 93296187 0.19 279 x 10" -0.13 0.47
Zfand1 95386102 0.51 93397683 93406694 025 135x 10713 -0.17 0.22
Mier3 46893067 0.34 42999528 43024481 0.14 129 x 10798 0.20 0.07
Myo10 67448697 0.26 77183028 77385896 0.12 535X 1079 0.09 0.85
Golph3 52381864 0.33 61789212 61817177 0.10 4.00 x 1079® 0.03 0.85

For each gene, only the transcript with the most significant eQTL is reported. SNPs with a marginal probability (MP) of association of at least 80% were considered as eQTLs.
Cis-eQTLs are defined as the SNP with highest marginal probability located within 10 Mb of the gene. P-value of the eQTL is calculated with a univariate t-test. R and the
adjusted P-value (P,q) refer to the correlation of the transcript with glomerular crescents. Cp is shown in bold as the only eQTL with MP > 80% correlating significantly with

the percentage of crescents.

(Supplemental Material, Figure S1). To further confirm the
pathological relevance of Cp differential expression in Crgn,
we compared Cp expression levels between WKY and LEW
nephritic renal cortex and showed significantly higher Cp
protein and mRNA levels in WKY rats (Figure 3C). Cp was
also detected in the proteinuric urine of WKY rats following
NTN induction (Figure 3D). Taken together, these results
show that genetically determined Cp mRNA and protein
levels in macrophages are also conserved in the kidneys fol-
lowing NTN induction, supporting further the association
between Cp and Crgn.

Ceruloplasmin is a determinant of macrophage activity
in the rat

To gain insights into the role of Cp in macrophage function, we
incubated WKY and LEW BMDMs with purified Cp for 3 hr. We
reasoned that if Cp had a transcriptional effect on macrophage
activation, this should result in early activation of transcripts
well-described in macrophage activation. Notably, Cp addi-
tion resulted in a significant upregulation of 116, Nos2, Tnf,
Il1b, and 1110 expression levels in macrophages from at least
one strain of rat (Figure 4). There was a genotype-dependent
expression of these markers as the magnitude of 16, Tnf,
and Nos2 expression levels was significantly higher in NTN-
susceptible WKY BMDMs when compared with LEW ones
(Figure 4). In keeping with this, 1110, the anti-inflammatory
macrophage marker, was expressed at relatively higher levels
in LEW BMDMs in response to Cp stimulation. Notably, when
we measured the secreted levels of TNFa and IL-10, we found
a marked increase in TNFa secretion following incubation
with Cp in WKY BMDMs only (Figure S2). Because cerulo-
plasmin is a major copper-carrying protein, we tested the
expression of intracellular proteins such as metallothioneins
(Mt1 and Mt2), previously described in copper homeostasis

(Suzuki et al. 2002) and in scavenging macrophage
superoxide radicals (Irato et al. 2001). As opposed to the
proinflammatory macrophage markers, Mtl and Mt2 were
down-regulated by Cp addition. WKY and LEW BMDMs
showed a difference in basal levels of both metallothioneins
(Figure 4). Glomerular crescent formation in Crgn is partly
dependent on infiltrating macrophages expressing Mmp9
and osteopontin (Sppl) (Triantafyllopoulou et al. 2010),
which led us to measure the expression of these transcripts
following addition of exogenous Cp. Purified Cp addition
resulted in genotype-dependent increase in Mmp9 mRNA
levels while it had no effect on Sppl, despite a significant
difference in basal BMDM SppI mRNA levels between LEW
and WKY rats (Figure 4).

After establishing the polarizing effect of Cp addition, we
investigated whether Cp knockdown recapitulated these re-
sults. Cp knockdown in WKY BMDMs, which overexpress the
protein, led to a significant downregulation of Tnfa, I11b, and
Mmp9, whereas there were no significant changes in 116,
Nos2, and I110 levels (Figure 5). Furthermore, Cp knockdown
was followed by a significant upregulation of Mt1, in line with
the downregulation observed following incubation with
Cp. In summary, Tnfa, Il1b, Mmp9, and Mt1 were confirmed
as Cp targets by using complementary approaches (Cp stim-
ulation and RNAi) during early activation of primary rat
macrophages.

Discussion

During the development of crescentic glomerulonephritis, the
major pathogenic event that causes crescent formation is the
rupture of glomerular capillaries, which allows a relatively
early macrophage infiltration into the Bowman’s space.
There have been numerous reports showing that macrophage
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activity and numbers are critical in the inflammatory phase of
Crgn (Duffield et al. 2005; Wang et al. 2007; Wang and Harris
2011) and our group has contributed to the identification of
genetic and epigenetic determinants of macrophage function,
which associate with susceptibility to Crgn in rats and hu-
mans (Aitman et al. 2006; Behmoaras et al. 2008, 2010;
Page et al. 2012; Deplano et al. 2013; Hull et al. 2013;
Kang et al. 2014; Rackham et al. 2017).

The identification of the most significant QTL and the
underlying genes in the WKY NTN model, led us to develop
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single and double congenic animals where either Crgnl and/
or Crgn2 were introgressed into WKY or LEW genetic back-
grounds (Behmoaras et al. 2010; D’Souza et al. 2013). These
congenic strategies, combined with bone marrow transplan-
tation studies, allowed us to conclude that after exclusion of
Crgnl and Crgn2, NTN susceptibility accounts for ~60% of
the total variance in glomerular inflammation and is depen-
dent on macrophage function (Behmoaras et al. 2010). In
the current study, we have performed genome-wide linkage
analysis using a BC population where segregation occurred



independently from Crgnl and Crgn2. This approach identi-
fied a significant QTL on chromosome 2 (Crgn8), which was
not present in the original F, population used (Aitman et al.
2006 and Figure 2B), where the remaining loci were desig-
nated as Crgn3-7. One explanation for this is a possible in-
teraction between Crgnl and/or Crgn2 with Crgn3-7. A
recent comprehensive QTL study in yeast showed that for
the majority of the traits studied, one or a few additive QTL
of large effects were observed together with many other QTL
and QTL-QTL interactions of small effects (Bloom et al
2015). It is therefore likely that Crgn8 is a new NTN QTL,
which shows no interactions with Crgnl and/or Crgn2 as
opposed to Crgn3-7.

The usage of the rat as a model organism for renal
translational research has been recently proven insightful
(Mamenko et al. 2016). Our fine mapping strategy based
on integrative systems biology approaches (Moreno-Moral
et al. 2017) prioritized ceruloplasmin as a positional candi-
date that regulates macrophage function in Crgn. Cp mRNA
levels in macrophages correlate with the percentage of glo-
merular crescents and in addition to transcript levels, Cp
protein levels are also genetically determined in the rat. Ce-
ruloplasmin is the main mammalian copper transporter and
an acute-phase plasma protein produced by hepatocytes and
by interferon-y-stimulated monocytes (Yang et al. 1986;
Mazumder et al. 1997; Vassiliev et al. 2005). Cp plasma level
nearly doubles in response to inflammation or infection
(Gitlin 1988). Ceruloplasmin exerts a ferroxidase activity
that converts Fe2* to Fe®*, at the expense of O,, playing an
important role in iron metabolism and transport through ac-
celerating binding of iron by apotransferrin (Osaki et al.
1966). In addition, through its ferroxidase activity, cerulo-
plasmin inhibits ferrous ion-mediated production of reactive
oxygen species, indicative of an antioxidant activity. In keep-
ing with its antioxidant properties, macrophage-derived ce-
ruloplasmin contributes importantly to protection against
inflammation and tissue injury in acute and chronic experi-
mental colitis (Bakhautdin et al. 2013). When exogenous Cp
is added to WKY and LEW rat BMDMs, this stimulates WKY
macrophages to produce significantly higher levels of proin-
flammatory cytokines such as TNF«, which is an important
proinflammatory driver in the rat NTN model (Khan et al.
2005). WKY BMDMs have been previously described as hav-
ing an M1-like phenotype such as enhanced superoxide pro-
duction (D’Souza et al. 2013) and HIF-1-mediated glycolytic
transcriptome (Rotival et al. 2015) when compared with
macrophages from the NTN-resistant LEW rats. While Cp-
mediated M1-like macrophage activation argues against
its protective antioxidant properties, the role of Cp in
iron efflux could provide a possible mechanism for the
Cp-dependent proinflammatory macrophage function in the
WKY rat. Cp stimulates iron release from macrophages under
hypoxic conditions, possibly by generating a negative iron
gradient (Sarkar et al. 2003). Interestingly, our LC-MS/MS
results have shown that a great majority of the proteins
belonging to iron metabolism are differentially produced

between WKY and LEW BMDMs, suggestive of a general dys-
regulation of the intracellular iron metabolism in WKY mac-
rophages. The strong metabolic shift toward HIF-1-mediated
glycolysis specifically occurring at transcriptomic level during
the differentiation of WKY BMDMs (Rotival et al. 2015) also
argues in favor of a perturbed iron homeostasis in this strain,
given the strong link between iron homeostasis and hypoxia-
inducible transcription factors (Peyssonnaux et al. 2007).
Hence the results showing the Cp-dependent increased
proinflammatory macrophage activation in WKY BMDMs
could be partly attributed to the role of Cp in regulating iron
homeostasis. The role of iron in proinflammatory macro-
phage function was indeed established in vivo (Sindrilaru
et al. 2011) and macrophage polarization is thought to be
under the regulation of iron trafficking and metabolism in
macrophages (Cairo et al. 2011). In addition to the iron link,
a possible proinflammatory role of Cp through nitric oxide
synthase activity and cytokine secretion was suggested in
microglial cells of the brain (Lee et al. 2007; Lazzaro et al.
2014).

Ceruloplasmin has been previously suggested as a physi-
ologic inhibitor of myeloperoxidase (MPO) (Segelmark et al.
1997). WKY rats immunized with MPO develop experimental
autoimmune vasculitis (EAV) (Little et al. 2009), which could
suggest a role of Cp in the pathophysiology of EAV. However,
the mechanisms by which an increased Cp level in macro-
phages could lead to anti-MPO-mediated renal damage remain
to be elucidated. Interestingly, when used in combination with
other markers, urinary Cp levels were found to be a predictor
of the activity of lupus nephritis in patients (Brunner et al.
2012). In summary, genetically determined macrophage Cp
levels could define a macrophage activity that explains suscep-
tibility to Crgn, and further studies aiming to understand the
role of Cp in human macrophages will shed light into mecha-
nisms of macrophage-dependent crescentic glomerulonephritis.
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