240 research outputs found

    Investigating protein- protein interactions in order to develop novel therapeutics for the treatment of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) accounts for around two thirds of all dementia cases and an increase in life expectancy of the population has resulted in a substantial increase in dementia cases and with that a rise in AD. AD is a debilitating and ultimately fatal neurodegenerative disorder of the elderly, and despite being identified over a century ago, the current treatments do not treat the underlying causes behind the disease, instead they help to mask the symptoms of the disease and prolong the brain’s remaining function. It is therefore vital that an effective, disease modifying treatment for this disease is established as soon as possible. Soluble intracellular forms of amyloid β (peptide Aβ), a hallmark of AD have been identified and intracellular targets of Aβ are being investigated as potential drug targets for the disease. Two key intracellular, mitochondrial proteins investigated as potential drug targets: amyloid binding alcohol dehydrogenase (ABAD) and cyclophilin D (CypD) are the focus of the work reported in this thesis. To begin identifying potential inhibitors of the ABAD-Aβ interaction, a two-pronged approach was taken. Firstly, a series of analogues based on a known inhibitor of the interaction were tested using a variety of biophysical assays, for their therapeutic affect on the interaction, and secondly a fragment based screening approach was used to identify new small molecule binding partners of ABAD which could potentially be modified to produced inhibitors of the ABAD-Aβ interaction. Three different CypD constructs have been successfully expressed and purified, and taken into crystal trials. It is hoped that these constructs can be used to significantly aid the progress of identifying any potential inhibitors and binding partners of CypD that may produce therapeutic effects, and in the future could lead to the identification of an effective disease modifying drug in the treatment of AD. The work reported in this thesis has built upon previously reported findings and the groundwork has also been established for several in vitro biophysical assays, these include for example: measuring ABAD enzyme activity, and the novel morphology specific Aβ aggregation assay, which can be used as screening tools to help identify potential inhibitors of these interactions. Both the ABAD-Aβ interaction, and the blockade of CypD are known to be drug targets in the treatment of AD, and by elucidating the molecular mechanisms behind these interactions, through implementing biophysical assays, this will help in the identification and design of potential new therapeutic agents for the treatment of AD

    RELATIONSHIP MARKETING: THE CASE OF BETTERLANGUAGES.COM LTD

    Get PDF
    This study will examine Relationship Marketing within B2B services, focusing on the translation agency Betterlanguages.com Ltd as a case in point. Betterlanguages.com Ltd is a small translation agency based in the East Midlands that currently specialises in label and packaging translation for high-street retailers. As they operate in a niche market the use of a case study will be the best suited approach to explore how their business functions and for researcher to produce a study that will be of use to the company. The objectives of this study are twofold; firstly, to examine the relationships between Betterlanguages.com Ltd and their clients, with a focus on how relationships are developed maintained. Secondly, to recommend Relationship Marketing strategies through which customers’ relationships can be strengthened and customers retained in the long run by Betterlanguages.com Ltd, and potentially other B2B service firms. Therefore, the potential contribution of this research is to gain academic and managerial understanding of translation agency-client relationships, and to explore how such firms might exploit Relationship Marketing strategies to their advantage

    « Appartenances coloniales ». Les répercussions du traité de Versailles sur le statut juridique des Allemands noirs et de leurs familles entre les deux guerres

    Get PDF
    Under the Treaty of Versailles the German colonial empire was placed under the mandate system of the League of Nations. France, Britain and South Africa took over legal responsibility for the administration of Germany’s former African territories, whose populations were, in theory, placed under the ‘diplomatic protection’ of the same states. What this amounted to was unspecified, but as this article shows, the willingness of the mandate states to take responsibility for their new charges would be particularly tested in Germany itself. There, to the concern of the German colonial authorities, a small population of African colonial subjects, willingly or otherwise, had set up home and formed families. This article examines the legal and real-life consequences the shift from German colony to Mandate state had during the interwar period for these men, their white, European wives and their German-born children who remained in Germany. At the same time, it highlights public and private initiatives undertaken by German-based Black people to raise attention to their plight and to improve their legal status

    RELATIONSHIP MARKETING: THE CASE OF BETTERLANGUAGES.COM LTD

    Get PDF
    This study will examine Relationship Marketing within B2B services, focusing on the translation agency Betterlanguages.com Ltd as a case in point. Betterlanguages.com Ltd is a small translation agency based in the East Midlands that currently specialises in label and packaging translation for high-street retailers. As they operate in a niche market the use of a case study will be the best suited approach to explore how their business functions and for researcher to produce a study that will be of use to the company. The objectives of this study are twofold; firstly, to examine the relationships between Betterlanguages.com Ltd and their clients, with a focus on how relationships are developed maintained. Secondly, to recommend Relationship Marketing strategies through which customers’ relationships can be strengthened and customers retained in the long run by Betterlanguages.com Ltd, and potentially other B2B service firms. Therefore, the potential contribution of this research is to gain academic and managerial understanding of translation agency-client relationships, and to explore how such firms might exploit Relationship Marketing strategies to their advantage

    Is Amyloid Binding Alcohol Dehydrogenase a Drug Target for Treating Alzheimer's Disease?

    Get PDF
    Current strategies for the treatment of Alzheimer's disease (AD) involve tackling the formation or clearance of the amyloid-beta peptide (Aβ) and/or hyper-phosphorylated tau, or the support and stabilization of the remaining neuronal networks. However, as we gain a clearer idea of the large number of molecular mechanisms at work in this disease, it is becoming clearer that the treatment of AD should take a combined approach of dealing with several aspects of the pathology. The concept that we also need to protect specific sensitive targets within the cell should also be considered. In particular the role of protecting the function of a specific mitochondrial protein, amyloid binding alcohol dehydrogenase (ABAD), will be the focus of this review. Mitochondrial dysfunction is a well-recognized fact in the progression of AD, though until recently the mechanisms involved could only be loosely labeled as changes in `metabolism'. The discovery that Aβ can be present within the mitochondria and specifically bind to ABAD, has opened up a new area of AD research. Here we review the evidence that the prevention of Aβ binding to ABAD is a drug target for the treatment of AD

    Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function

    Get PDF
    Authors would like to acknowledge ARUK for supporting this research. YC is Chinese Scholarship recipient. The University of St Andrews is a charity registered in Scotland: No SC013532Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid β (Aβ) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose‐derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose‐serum deprived (CGSD) model of ischaemic stroke in SH‐SY5Y cells and a Aβ1‐42‐treatment model of AD in differentiated hippocampal cells. Using a combination of JC‐1 and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aβ1‐42. Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit upregulation of the mitochondrial fission protein Fis1 and downregulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to upregulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aβ1‐42. We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.Publisher PDFPeer reviewe

    In Vitro Assay Development and HTS of Small-Molecule Human ABAD/17β-HSD10 Inhibitors as Therapeutics in Alzheimer's Disease

    Get PDF
    This research was funded by the Scottish Universities Life Science Alliance (SULSA) assay development fund. This research was also kindly supported by The Rosetrees Trust and The Alzheimer’s Society, specifically The Barcopel Foundation, and partly funded by the MSD Scottish Life Sciences fund. As part of an ongoing contribution to Scottish life sciences, MSD Limited, a global health care leader, has given substantial monetary funding to the Scottish Funding Council for distribution via SULSA to develop and deliver a high-quality drug discovery research and training program.A major hallmark of Alzheimer’s disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-β peptide (Aβ). Aβ has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aβ-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.PostprintPeer reviewe

    1-(Benzo[d]thiazol-2-yl)-3-phenylureas as dual inhibitors of casein kinase 1 and ABAD enzymes for treatment of neurodegenerative disorders

    Get PDF
    This work was supported by the Ministry of Health of the Czech Republic [no. NV15-28967 A], Specific Research Project of Faculty of Science, University of Hradec Kralove [no. 2103-2017], National Institute of Mental Health [NIMH CZ; no. ED2.1.00/03.0078] from the European Regional Development Fund, COST CA15135, The Alzheimer’s Society (specifically The Barcopel Foundation), The Rosetrees trust and The Biotechnology and Biological Sciences Research Council (BBSRC) [no. BB/J01446X/1]. Funding from Ministry of Economy and competitiveness, Spain [no. SAF2012-37979-C03-01] is also acknowledged.Several neurodegenerative disorders including Alzheimer’s disease (AD) have been connected with deregulation of casein kinase 1 (CK1) activity. Inhibition of CK1 therefore presents a potential therapeutic strategy against such pathologies. Recently, novel class of CK1-specific inhibitors with N-(benzo[d]thiazol-2-yl)-2-phenylacetamide structural scaffold has been discovered. 1-(benzo[d]thiazol-2-yl)-3-phenylureas, on the other hand, are known inhibitors amyloid-beta binding alcohol dehydrogenase (ABAD), an enzyme also involved in pathophysiology of AD. Based on their tight structural similarity, we decided to evaluate series of previously published benzothiazolylphenylureas, originally designed as ABAD inhibitors, for their inhibitory activity towards CK1. Several compounds were found to be submicromolar CK1 inhibitors. Moreover, two compounds were found to inhibit both, ABAD and CK1. Such dual-activity could be of advantage for AD treatment, as it would simultaneously target two distinct pathological processes involved in disease’s progression. Based on PAMPA testing both compounds were suggested to permeate the blood-brain barrier, which makes them, together with their unique dual activity, interesting lead compounds for further development.Publisher PDFPeer reviewe

    6-benzothiazolyl ureas, thioureas and guanidines are potent inhibitors of ABAD/17β-HSD10 and potential drugs for Alzheimer's disease treatment : design, synthesis and in vitro evaluation

    Get PDF
    Background : The mitochondrial enzyme amyloid beta-binding alcohol dehydrogenase (ABAD) also known as 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) has been connected with the pathogenesis of Alzheimer’s disease (AD). ABAD/ 17β-HSD10 is a binding site for the amyloid-beta peptide (Aβ) inside the mitochondrial matrix where it exacerbates Aβ toxicity. Interaction between these two proteins triggers a series of events leading to mitochondrial dysfunction as seen in AD. Methods : As ABAD’s enzymatic activity is required for mediating Aβ toxicity, its inhibition presents a promising strategy for AD treatment. In this study, a series of new benzothiazolylurea analogues have been prepared and evaluated in vitro for their potency to inhibit ABAD/ 17β-HSD10 enzymatic activity. The most potent compounds have also been tested for their cytotoxic properties and their ability to permeate through blood-brain barrier has been predicted. To explain the structure-activity relationship QSAR and pharmacophore studies have been performed. Results and Conclusions : Compound 12 was identified being the most promising hit compound with good inhibitory activity (IC50 = 3.06 ± 0.40µM) and acceptable cytotoxicity profile comparable to the parent compound of frentizole. The satisfactory physical-chemical properties suggesting its capability to permeate through BBB make compound 12 a novel lead structure for further development and biological assessment.PostprintPeer reviewe
    corecore