5 research outputs found

    Phosphorus dynamics in sediments at the river-sea interface : model-data coupling

    No full text
    Le phosphore (P) est un nutriment essentiel à la vie, suite à son rôle clé dans la régulation de la production primaire à l'interface fleuve-mer, et au lien étroit de son cycle avec les cycles du carbone et de l'azote. L'enfouissement du phosphore dans les sédiments de l'interface fleuve-mer se fait en association avec la matière organique et des minéraux. Cet enfouissement est la voie d'élimination du P à long terme. Cependant, le rôle des sédiments dans le recyclage du phosphore inorganique dissous (DIP) est mal quantifié dans les estuaires eutrophes. Cette thèse a pour objectif d'affiner la compréhension sur la réponse des sédiments au recyclage du DIP dans les sédiments des estuaires de l'Elorn et de l'Aulne (France). De plus, nous visons à la mettre en contraste avec les sédiments deltaïques (delta du Rhône) dans la mer Méditerranéenne oligotrophe. Deuxièmement, ces écosystèmes sont dynamiques, caractérisés par des charges intenses de matière organique et de nutriments (N, P), entraînant leur enfouissement sous l'interface eau-sédiment (IES) et leur minéralisation. Par conséquent, les processus biogéochimiques peuvent modifier en grande partie la chimie de la couche supérieure de ces sédiments. Nous visons à quantifier les processus diagénétiques, contrôlant le devenir de la matière organique, la transformation du phosphore et les flux de DIP vers l'eau de fond. Pour cela, nous avons utilisé des données de terrain couplées avec un modèle existant (OMEXDIA), étendu au cycle benthique du phosphore, pour évaluer aussi la capacité des sédiments à servir de puits ou de sources de P. Le modèle OMEXDIA-P a été adapté aux données d'eau interstitielle (oxygène, nitrate, ammonium, unités de demande en oxygène (Mn2+, Fe2+ et H2S; ODU) et de DIP) et de solides (P organique, P lié au fer et P lié au calcium) de quatre saisons en 2009 dans les stations amont, milieu et aval des deux estuaires. Ensuite, le modèle a été ajusté aux mêmes variables d'état, en plus des sulfates et carbone inorganique dissous (DIC) pour neuf stations dans l'exutoire du Rhône, son prodelta et son plateau continental adjacent, et échantillonnées en Mai 2018. Les deux applications du modèle ont montré une bonne concordance avec la distribution verticale des phases dissoutes et solides dans toutes les stations et les saisons. L'utilisation combinée de ces bases de données avec ce modèle a révélé que les flux de C organique à l’IES des estuaires de l'Elorn et de l'Aulne (23 à 98 mmol m-2 j-1) et dans le prodelta du Rhône (10 à 160 mmol m-2 j-1) étaient intenses, en particulier à l'exutoire du fleuve. Ainsi, la minéralisation en P organique a représenté la principale source de DIP produit dans les deux estuaires (77%) et dans le prodelta du Rhône (>90%). La contribution des voies de minéralisation a mis en évidence une augmentation de la contribution de la minéralisation anoxique due au gradient salin de l'amont vers l'aval des estuaires. Alors que ces voies ont montré une diminution de l'écoulement du Rhône vers le plateau continental, en fonction de la diminution des apports de matière organique avec la distance. Le calcul du bilan du P par le modèle a indiqué que le P lié au fer joue un rôle clé dans le cycle du P, en retenant le DIP dans les sédiments et en favorisant la précipitation de P lié au Ca. De plus, le P lié au fer représente une source supplémentaire de DIP dans les sédiments des deux estuaires. La plus grande proportion du DIP produit a été recyclée dans l'eau de fond de ces sédiments estuariens (85%) et deltaïques (72%), tandis que l'enfouissement sous forme de P lié au Ca était une fraction mineure. Dans l'ensemble, les résultats du modèle présentés ont démontré que ces sédiments estuariens et deltaïques jouaient un rôle essentiel dans le cycle benthique du P et constituaient des sources de DIP dans la colonne d'eau. De plus, les apports de DIP produits dans les sédiments de l'Elorn et de l'Aulne étaient plus élevés que les apports externes.Phosphorus (P) is an essential nutrient for life, playing a key role in the primary production regulation at the river-sea interface, and closely to carbon and nitrogen global cycles. The burial of phosphorus in sediments of the river-sea interface occurs in association with organic matter and mineral particles. This burial represents the long-term removal pathway for the phosphorus. However, sediments role in dissolved inorganic phosphorus (DIP) recycling, is poorly quantified in eutrophic estuaries. Therefore, the main purpose of this thesis is to refine our understanding about sediments response to DIP recycling in Elorn and Aulne estuarine sediments (Brittany, France). In addition, we aim to contrast it with deltaic sediments (Rhône River delta) in the oligotrophic Mediterranean Sea. Secondly, all these ecosystems are highly dynamic, characterized by intense loads of organic matter and nutrients (N, P), leading to their intense fall on the sea floor, burial below the sediment-water interface (SWI) and mineralization. Therefore, involved biogeochemical processes can change largely the chemistry of upper layer of these sediments. We aim to clarify and to quantify the depth sequences of diagenetic processes, controlling the fate of sedimentary organic matter, transformation of phosphorus and induced DIP fluxes to the overlying water. To this end, we used a coupled field data with an existing model (OMEXDIA), extended with phosphorus (P) benthic cycle, to study P dynamics and to evaluate the sediments capacity as sinks or sources of P in the eutrophic Elorn and Aulne estuaries and the Rhône River prodelta. First of all, the OMEXDIA-P model was fitted to the porewater (oxygen, nitrate, ammonium, Oxygen Demand Units (Mn2+, Fe2+ and H2S, reduced during the anoxic mineralization; ODU) and DIP) and solid (organic P, Fe-bound P and Ca-bound P) data from four seasons (February, May, July and October 2009) in upstream, midstream and downstream stations of Elorn and Aulne estuaries. Secondly, the model was fitted to the same state variables, in addition to sulfate and dissolved inorganic carbon (DIC) for nine stations located in Rhône River outlet, prodelta and its adjacent continental shelf and sampled in May 2018. Both model’s applications showed a good agreement with the vertical distribution of porewater and solid phases in all stations and seasons. The combined use of these two datasets with the present model revealed that organic C fluxes deposited in the SWI of Elorn and Aulne estuaries (23 to 98 mmol m-2 d-1) and Rhône River prodelta (10 to 160 mmol m-2 d-1) were intense, especially in the River outlet. Therefore, the organic P mineralization represented the main source of internally produced DIP in both estuaries (77% of total DIP production) and in Rhône River prodelta (>90%). The contribution of mineralization pathways highlighted an increase of anoxic mineralization contribution due to saline gradient from upstream to downstream estuaries. While this mineralization pathways showed a decrease from Rhône River outlet to the continental shelf, as a function of the decrease of organic matter inputs with distance. The model’s calculation of sedimentary P budget indicated also that Fe-bound P played a key role in the P cycle, by retaining DIP in sediments from diffusion to overlying water and promoting the Ca-bound P precipitation. Moreover, Fe-bound P represented an additional source of DIP in sediments, especially in Elorn and Aulne estuaries. The largest proportion of released DIP was recycled to overlying water in these estuarine (85%) and deltaic (72%) sediments, while the burial as an authigenic Ca-bound P was a minor fraction. Overall, the model’s results presented here also demonstrated that these estuarine and deltaic sediments played a key role in the benthic P cycle and acted as sources of DIP to the water column. Moreover, the internally produced DIP inputs in Elorn and Aulne sediments was higher the external inputs

    Spatio-temporal dynamics of sedimentary phosphorus along two temperate eutrophic estuaries: A data-modelling approach

    No full text
    Sediments play an important role in dissolved inorganic phosphorus (DIP) recycling, which needs to be precisely quantified in eutrophic estuaries. A coupled field data and diagenetic modelling approach was used to study P dynamics in two estuaries (Elorn and Aulne, Brittany, France). An existing model (OMEXDIA) was extended with phosphorus (P) benthic cycle by adding dissolved inorganic phosphorus (DIP) and particulate P fractions (organic P, Fe-bound P and Ca-bound P). The model was fitted to pore water oxygen, nitrate, ammonium, oxygen demand units (reduced substances that were produced by the anoxic mineralization; Fe2+, Mn2+ and H2S; ODU), DIP, sediment organic P and C, Fe-bound P and Ca-bound P data from four seasons (February, May, July and October 2009) in two eutrophic estuaries (Elorn and Aulne). These two systems were investigated along the salinity gradient with 3 stations per estuary. The model shows that high organic C fluxes deposited in the sediments (23–98 mmol m-2 d-1) caused high organic P mineralization rates, which is the modeled main benthic source of DIP (77%). The DIP recycling fluxes were calculated in Elorn (463 ± 122 μmol m-2 d-1) and in Aulne (320 ± 137 μmol m-2 d-1) estuaries, and overall 85% of DIP produced in the sediment was recycled to the overlying water. A limited but substantial proportion (15%) was precipitated as Ca-bound P except in the upstream reach of the Aulne in February, where the integrated rate of Ca-bound P precipitation constitutes a major sink of DIP (83%). The high DIP recycling fluxes in Elorn and Aulne estuaries, integrated over the entire area, were 3–20 times larger than the river DIP input. This comparison of external and internal DIP loads shows the major role of these sediments as sources of DIP to the estuary and the potential storage of formerly discharged nutrients

    Spatial Variability of Organic Matter and Phosphorus Cycling in Rhône River Prodelta Sediments (NW Mediterranean Sea, France): a Model-Data Approach

    No full text
    International audienceThe Mediterranean Sea (MS) is a large oligotrophic sea whose productivity is sensitive to riverine nutrient inputs. More specifically, phosphorus (P) river supply is crucial for the MS, with an important role of the estuarine/deltaic filter especially for the storage and recycling in sediments. A benthic dataset from the Rhône River prodelta was used to derive P budgets, by means of an early diagenetic model including the benthic P cycle. The model was fitted to pore water profiles of oxygen, nitrate, sulfate, dissolved inorganic carbon, ammonium, oxygen demand units, dissolved inorganic phosphorus (DIP) and solid data (organic carbon (OC), Fe-bound P, Ca-bound P and organic P). Results indicated that the intensity of biogeochemical processes occurring below the sediment–water interface decreased from the river mouth to the adjacent continental shelf with decreasing integrated rates of OC mineralization (160–10 mmol m−2 day−1). The organic P mineralization was intense near the river mouth and decreased offshore (1196–80 μmol m−2 day−1). Its contribution to DIP release was large (> 90%). Fe-bound P had a key role in transferring P to deeper layers. These deltaic sediments played an important role as a source of regenerated DIP. A significant part of DIP was recycled to the overlying waters (72–94%), representing 25% of the riverine DIP discharge. Simultaneously, 6–28% of DIP produced in sediments was buried as Ca-bound P. Overall, this study highlighted the importance of deltaic sediments as an additional source of DIP to the coastal sea, and a minor but permanent sink of phosphorus as solid P burial
    corecore