136 research outputs found

    How effectively do horizontal and vertical response strategies of long-finned pilot whales reduce sound exposure from naval sonar?

    Get PDF
    PJW was supported with studentships of The Netherlands Ministry of Defence (grant number 032.30370/01.02) and the VSB Foundation (grant number VSB.08/228-E) and Ren e Dekeling is acknowledged for making funding possible. The 3S project was supported by the US OfïŹce of Naval Research, The Netherlands Ministry of Defence, Royal Norwegian Navy and Norwegian Ministry of Defence, and by World Wildlife Fund Norway. PLT received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged.The behaviour of a marine mammal near a noise source can modulate the sound exposure it receives. We demonstrate that two long-finned pilot whales both surfaced in synchrony with consecutive arrivals of multiple sonar pulses. We then assess the effect of surfacing and other behavioural response strategies on the received cumulative sound exposure levels and maximum sound pressure levels (SPLs) by modelling realistic spatiotemporal interactions of a pilot whale with an approaching source. Under the propagation conditions of our model, some response strategies observed in the wild were effective in reducing received levels (e.g. movement perpendicular to the source's line of approach), but others were not (e.g. switching from deep to shallow diving; synchronous surfacing after maximum SPLs). Our study exemplifies how simulations of source-whale interactions guided by detailed observational data can improve our understanding about motivations behind behaviour responses observed in the wild (e.g., reducing sound exposure, prey movement).PostprintPeer reviewe

    UBC-Nepal expedition: The use of oral antioxidants does not alter cerebrovascular function at sea-level or high-altitude

    Get PDF
    Hypoxia is associated with an increased systemic and cerebral formation of free radicals and associated reactants that may be linked to impaired cerebral vascular function a neurological sequela. To what extent oral antioxidants prophylaxis impacts cerebrovascular function in humans throughout the course of acclimatization to the hypoxia of terrestrial high-altitude has not been examined. Thus, the purpose of the current study was to examine the influence of orally ingested antioxidants at clinically relevant doses (vitamin C, E, and alpha-lipoic acid) on cerebrovascular regulation at sea-level (344 m; n = 12; female n = 2 participants), and at high altitude (5050 m; n = 9; female n = 2), in a randomized, placebo-controlled, and double-blinded crossover design. Hypercapnic and hypoxic cerebrovascular reactivity tests of the internal carotid (ICA)] were conducted at sea-level, while global and regional cerebral blood flow [i.e. ICA and vertebral artery (VA)] were assessed after 10–12 days following arrival at 5050 m. At sea-level, acute administration of antioxidants did not alter cerebral hypoxic cerebrovascular reactivity (pre vs. post: 1.5 ± 0.7 vs. 1.2 ± 0.8 %∆CBF/-%∆SpO2; P = 0.96), or cerebral hypercapnic cerebrovascular reactivity (pre vs. post: 5.7 ± 2.0 vs. 5.8 ± 1.9 %∆CBF/∆mmHg; P = 0.33). Furthermore, global cerebral blood flow (P = 0.43), as well as cerebral vascular conductance (ICA P = 0.08; VA P = 0.32), were unaltered at 5050 m following antioxidant administration. In conclusion, these data show that an oral antioxidant cocktail known to attenuate systemic oxidative stress failed to alter cerebrovascular function at sea-level and cerebral blood flow during acclimatization to high-altitude

    Shear-Mediated Dilation of the Internal Carotid Artery Occurs Independent of Hypercapnia.

    Get PDF
    Evidence for shear stress as a regulator of carotid artery dilation in response to increased arterial carbon dioxide was recently demonstrated in humans during sustained elevations in CO2 (hypercapnia); however, the relative contributions of CO2 and shear stress to this response remains unclear. We examined the hypothesis that, following a 30-second transient increase in arterial CO2 tension and consequent increase in internal carotid artery shear stress, internal carotid artery diameter would increase, indicating shear-mediated dilation, in the absence of concurrent hypercapnia. In 27 healthy participants the partial pressures of end-tidal O2 and CO2, ventilation (pneumotachography), blood pressure (finger-photoplethysmography), heart-rate (electrocardiogram), internal carotid artery flow, diameter and shear stress (high resolution duplex ultrasound) and middle cerebral artery blood velocity (transcranial Doppler) were measured during 4-minute steady state and transient 30-second hypercapnic tests (both +9mmHg CO2). Internal carotid artery dilation was lower in the transient, compared to the steady state hypercapnia (3.3±1.9% vs. 5.3±2.9%, respectively; P<0.03). Increases in internal carotid artery shear stress preceded increases in diameter in both the transient (time: 16.8±13.2s vs. 59.4±60.3s; P<0.01) and steady state (time: 18.2±14.2s vs. 110.3±79.6s; P<0.01) tests. Internal carotid artery dilation was positively correlated with shear rate area under the curve in the transient (r(2)=0.44; P<0.01), but not steady state (r(2)=0.02; P=0.53) trial. Collectively, these results suggest that hypercapnia induces shear-mediated dilation of the internal carotid artery in humans. This study further promotes the application and development of hypercapnia as a clinical strategy for the assessment of cerebrovascular vasodilatory function and health in humans

    UBC-Nepal Expedition: An experimental overview of the 2016 University of British Columbia Scientific Expedition to Nepal Himalaya

    Get PDF
    The University of British Columbia Nepal Expedition took place over several months in the fall of 2016 and was comprised of an international team of 37 researchers. This paper describes the objectives, study characteristics, organization and management of this expedition, and presents novel blood gas data during acclimatization in both lowlanders and Sherpa. An overview and framework for the forthcoming publications is provided. The expedition conducted 17 major studies with two principal goals—to identify physiological differences in: 1) acclimatization; and 2) responses to sustained high-altitude exposure between lowland natives and people of Tibetan descent. We performed observational cohort studies of human responses to progressive hypobaric hypoxia (during ascent), and to sustained exposure to 5050 m over 3 weeks comparing lowlander adults (n = 30) with Sherpa adults (n = 24). Sherpa were tested both with (n = 12) and without (n = 12) descent to Kathmandu. Data collected from lowlander children (n = 30) in Canada were compared with those collected from Sherpa children (n = 57; 3400–3900m). Studies were conducted in Canada (344m) and the following locations in Nepal: Kathmandu (1400m), Namche Bazaar (3440m), Kunde Hospital (3480m), Pheriche (4371m) and the Ev-K2-CNR Research Pyramid Laboratory (5050m). The core studies focused on the mechanisms of cerebral blood flow regulation, the role of iron in cardiopulmonary regulation, pulmonary pressures, intra-ocular pressures, cardiac function, neuromuscular fatigue and function, blood volume regulation, autonomic control, and micro and macro vascular function. A total of 335 study sessions were conducted over three weeks at 5050m. In addition to an overview of this expedition and arterial blood gas data from Sherpa, suggestions for scientists aiming to perform field-based altitude research are also presented. Together, these findings will contribute to our understanding of human acclimatization and adaptation to the stress of residence at high-altitude

    Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates

    Get PDF
    Funding: U.S. Office of Naval Research (ONR Grant No. N00014-14-1-0409); P.L.T. acknowledges funding received from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (Grant No. HR09011) and contributing institutions.Passive acoustic monitoring with widely-dispersed hydrophones has been suggested as a cost-effective method to monitor population densities of echolocating marine mammals. This requires an estimate of the area around each receiver over which vocalizations are detected—the “effective detection area” (EDA). In the absence of auxiliary measurements enabling estimation of the EDA, it can be modelled instead. Common simplifying model assumptions include approximating the spectrum of clicks by flat energy spectra, and neglecting the frequency-dependence of sound absorption within the click bandwidth (narrowband assumption), rendering the problem amenable to solution using the sonar equation. Here, it is investigated how these approximations affect the estimated EDA and their potential for biasing the estimated density. EDA was estimated using the passive sonar equation, and by applying detectors to simulated clicks injected into measurements of background noise. By comparing model predictions made using these two approaches for different spectral energy distributions of echolocation clicks, but identical click source energy level and detector settings, EDA differed by up to a factor of 2 for Blainville's beaked whales. Both methods predicted relative density bias due to narrowband assumptions ranged from 5% to more than 100%, depending on the species, detector settings, and noise conditions.Publisher PDFPeer reviewe

    Global REACH 2018: Renal oxygen delivery is maintained during early acclimatization to 4330 m

    Get PDF
    Early acclimatization to high-altitude is characterized by various respiratory, hematological, and cardiovascular adaptations that serve to restore oxygen delivery to tissue. However, less is understood about renal function and the role of renal oxygen delivery (RDO2) during high altitude acclimatization. We hypothesized that: 1) RDO2 would be reduced after 12-hours of high-altitude exposure (high-altitude day1) but restored to sea-level values after one-week (high altitude day7); and 2) RDO2 would be associated with renal reactivity (RR), an index of acid base compensation at high-altitude. Twenty-four healthy lowlander participants were tested at sea-level (344m; Kelowna, Canada), on day1 and day7 at high-altitude (4330m; Cerro de Pasco, Peru). Cardiac output, renal blood flow, arterial and venous blood sampling for renin angiotensin-aldosterone-system hormones and NT pro-B type natriuretic peptides were collected at each time point. RR was calculated as: (Δ arterial bicarbonate)/(Δ partial pressure of arterial carbon dioxide) between sea-level and high-altitude day1, and sea-level and high-altitude day7. The main findings were: 1) RDO2 was initially decreased at high-altitude compared to sea-level (ΔRDO2: -22±17%, P<0.001), but was restored to sea-level values on high-altitude day7 (ΔRDO2: -6±14%, P=0.36). The observed improvements in RDO2 resulted from both changes in renal blood flow (Δ from high-altitude day1: +12±11%; P=0.008), and arterial oxygen content (Δ from high-altitude day1 +44.8±17.7%; P=0.006); and 2) RR was positively correlated with RDO2 on high-altitude day7 (r=0.70; P<0.001), but not high-altitude day1 (r=0.26; P=0.29). These findings characterize the temporal responses of renal function during early high-altitude acclimatization, and the influence of RDO2 in the regulation of acid-base

    UBC-Nepal Expedition: Haemoconcentration underlies the reductions in cerebralblood flow observed during acclimatization to high-altitude

    Get PDF
    At high‐altitude, increases in haematocrit (Hct) are achieved through altitude‐induced diuresis and erythropoiesis, both of which result in increased arterial oxygen content (CaO2). Given the impact alterations in Hct have on CaO2, haemoconcentration has been hypothesized to partly mediate the attenuation of the initial elevation in cerebral blood flow (CBF) at high‐altitude. To test this hypothesis, healthy males (n = 13) ascended to 5050 m over nine days without the aid of prophylactic acclimatization medications. Following one‐week of acclimatization at 5050 m, participants were haemodiluted by rapid saline infusion (2.10 ± 0.28 L) to return Hct towards pre‐acclimatized levels. Arterial blood gases, Hct, global CBF (duplex ultrasound), and haemodynamic variables were measured following initial arrival to 5050 m, and after one‐week of acclimatization at high‐altitude, prior to and following the haemodilution protocol. Following one‐week at 5050 m, Hct increased from 42.5 ± 2.5 to 49.6 ± 2.5% (P < 0.001), and was subsequently reduced to 45.6 ± 2.3% (P < 0.001) following haemodilution. Global CBF decreased from 844 ± 160 to 619 ± 136 ml mi−1 n (P = 0.033) following one‐week of acclimatization and increased to 714 ± 204 ml mi−1n (P = 0.045) following haemodilution. Despite the significant changes in Hct, and thus CaO2, cerebral oxygen delivery was unchanged at all time points. Furthermore, these observations occurred in the absence of any changes in mean arterial blood pressure, cardiac output, arterial blood pH, or oxygen saturation pre‐ and post‐haemodilution. These data highlight the influence of Hct in the regulation of CBF and are the first to demonstrate experimentally that haemoconcentration contributes to the reduction in CBF during acclimatization to altitude

    No Evidence That Gratitude Enhances Neural Performance Monitoring or Conflict-Driven Control

    Get PDF
    It has recently been suggested that gratitude can benefit self-regulation by reducing impulsivity during economic decision making. We tested if comparable benefits of gratitude are observed for neural performance monitoring and conflict-driven self-control. In a pre-post design, 61 participants were randomly assigned to either a gratitude or happiness condition, and then performed a pre-induction flanker task. Subsequently, participants recalled an autobiographical event where they had felt grateful or happy, followed by a post-induction flanker task. Despite closely following existing protocols, participants in the gratitude condition did not report elevated gratefulness compared to the happy group. In regard to self-control, we found no association between gratitude--operationalized by experimental condition or as a continuous predictor--and any control metric, including flanker interference, post-error adjustments, or neural monitoring (the error-related negativity, ERN). Thus, while gratitude might increase economic patience, such benefits may not generalize to conflict-driven control processes
    • 

    corecore