560 research outputs found

    Electrokinetically-Enhanced Emplacement of Lactate in a Chlorinated Solvent Contaminated Clay Site to Promote Bioremediation

    Get PDF
    Bioremediation through the injection of electron donors and bacterial cultures is effective at treating chlorinated solvent contamination but faces limitations in low permeability zones where the injected amendments cannot be delivered successfully. Using electrokinetics in combination with bioremediation to enhance the delivery of amendments was tested at a chlorinated solvent contaminated field site, where lactate was injected into clay under a direct current. Advection at locations with higher hydraulic conductivities contributed to lactate transport and dilution of aqueous chlorinated solvents. There was evidence of successful delivery of lactate by electromigration (EM) in all monitoring locations with EM lactate transport rates between 1.3 to 3.0 cm/day. Lactate emplacement resulted in the stimulation of bacterial populations and evidence suggests some biodegradation of chlorinated solvents was observed on site. This research provides evidence that with further field investigation, electrokinetically-enhanced bioremediation has potential as a treatment strategy for contaminated low permeability strata

    Is there a relationship between fingerprint donation and DNA shedding?

    Get PDF
    This research investigates the possible relationship between fingerprint donation and DNA shedding. Volunteers were asked to provide a series of fingerprint depletions on glass. The level of fingerprint detail developed and DNA profiling results obtained were compared for each donor to investigate whether a relationship between fingerprint donation and DNA shedding exists. Our results suggest that between comparisons of donors, there is no statistical difference between the left and right hand of our volunteers in terms of fingerprint donation, but there is a statistical difference in terms of DNA shedding with three of our eight donors. Our results also indicate that there is no correlation between fingerprint donation and DNA shedding, meaning that an enhanced fingerprint with full ridge detail will not necessarily give a full DNA profile. In serious crime, these two avenues of evidence must be explored

    Bench-to-bedside review: Association of genetic variation with sepsis

    Get PDF
    Susceptibility and response to infectious disease is, in part, heritable. Initial attempts to identify the causal genetic polymorphisms have not been entirely successful because of the complexity of the genetic, epigenetic, and environmental factors that influence susceptibility and response to infectious disease and because of flaws in study design. Potential associations between clinical outcome from sepsis and many inflammatory cytokine gene polymorphisms, innate immunity pathway gene polymorphisms, and coagulation cascade polymorphisms have been observed. Confirmation in large, well conducted, multicenter studies is required to confirm current findings and to make them clinically applicable. Unbiased investigation of all genes in the human genome is an emerging approach. New, economical, high-throughput technologies may make this possible. It is now feasible to genotype thousands of tag single nucleotide polymorphisms across the genome in thousands of patients, thus addressing the issues of small sample size and bias in selecting candidate polymorphisms and genes for genetic association studies. By performing genome-wide association studies, genome-wide scans of nonsynonymous single nucleotide polymorphisms, and testing for differential allelic expression and copy number polymorphisms, we may yet be able to tease out the complex influence of genetic variation on susceptibility and response to infectious disease

    School survey, the city of Natchez and Adams County, Mississippi, 1955

    Get PDF
    https://egrove.olemiss.edu/ms_school_surveys/1021/thumbnail.jp

    The recoverability of fingerprints on paper exposed to elevated temperatures - Part 1: comparison of enhancement techniques

    Get PDF
    This research investigates the recoverability of fingerprints which have been exposed to elevated temperatures in order to mimic the environment a piece of paper may be exposed to within an arson scene. Arson is an expensive crime, costing the UK economy, on average, £53.8 million each week [1]. Anything which may give rise to the identity of the fire setter should be analysed and as such, unburnt paper may be a potential source of fingerprints. While it is true that even a moderate fire will obscure and render partially useless some types of evidence, many items, including fingerprints, may still survive [2-4]. This research has shown that fingerprints are still retrievable from paper which has been subjected to the maximum testing conditions of 200˚C for 320min. In fact, some fingerprints naturally enhance themselves by the heating process. This investigation has also shown that the most effective enhancement technique was found to be 1,8-diazafluoren-9-one (DFO) for exposure temperatures upto 100˚C. Physical developer (PD) is the most effective enhancement technique for exposure temperatures from 100˚C to 200˚C. For porous surfaces, there are fingerprint development techniques which are effective at enhancing fingerprints exposed upto a temperature of 200˚C, irrespective of the firefighting extinguishing technique, as PD, in addition to developing fingerprints exposed to high temperatures, is one of the few processes which will enhance fingermarks on wetted surfaces

    The recoverability of fingerprints on paper exposed to elevated temperatures - Part 2: natural fluorescence

    Get PDF
    Previous work by the authors [1] investigated the recoverability of fingerprints on paper which had been exposed to elevated temperatures by comparing various chemical enhancement techniques (ninhydrin, 1,8-diazafluoren-9-one (DFO), and physical developer (PD)). During that study, it became apparent, as a consequence of observations made in operational work [2], that fingerprints on paper subjected to 150ËšC fluoresced under examination with green light of waveband 473-548nm with a 549nm viewing filter. This work examined the three types of prints (eccrine, sebaceous, and ungroomed) after 20 min exposure to the temperature range 110ËšC to 190ËšC (in 10ËšC increments) and found that the eccrine fingerprints fluoresced more brightly. This indicated that it was a component of the eccrine deposit which was causing the fluorescence. Luminance measurements found that the maximum fluorescence was experienced at 170ËšC on both types of paper. As a consequence, eccrine heat-treated fingerprints were viewed under violet-blue (350-469nm), blue (352-509nm), and green light (473-548nm) which indicated that the greatest luminance intensities were obtained under blue light and the smallest under green light. In order to determine what component of the eccrine fingerprint was causing this fluorescence, five of the most prevalent amino acids (alanine, aspartic acid, glycine, lysine, and serine) [3-4] were exposed to this temperature range. The luminance measurements were taken under exposure to the green light in order for the minimum fluorescence to be observed, with an assumption that blue-violet or blue illumination will provide brighter fluorescence in practice. The results indicated that four of the amino acids are behaving similarly across the temperature range, but with slightly different luminance measurements, but all are exhibiting some level of fluorescence. Thermal degradation products of alanine and aspartic acid have been suggested by Richmond-Aylor et al. [5]. The structure of these thermal degradation products is cyclic in nature, and as such, there is a possibility that two of these products would fluorescence. Sodium chloride and urea were also exposed to the temperature range and they also fluoresced to some extent. This work shows that eccrine fingerprints that have been exposed to temperatures of between 130ËšC to 180ËšC will fluoresce under violet-blue, blue, and green light. This level of fluorescence for ungroomed fingerprints is much less but this will be dependent on the individual, the more eccrine the deposit, the stronger the fluorescence. This work shows that the amino acids, sodium chloride, and urea present in fingerprint deposits are all contributing to the fluorescence of the print, but may not be the sole contributor as other eccrine components have not yet been tested

    Hinge Region in DNA Packaging Terminase pUL15 of Herpes Simplex Virus: A Potential Allosteric Target for Antiviral Drugs

    Get PDF
    Approximately 80% of adults are infected with a member of the herpesviridae family. Herpesviruses establish life-long latent infections within neurons, which may reactivate into lytic infections due to stress or immune suppression. There are nine human herpesviruses (HHV) posing health concerns from benign conditions to life threatening encephalitis, including cancers associated with viral infections. The current treatment options for most HHV conditions mainly include several nucleoside and nucleotide analogs targeting viral DNA polymerase. Although these drugs help manage infections, their common mechanism of action may lead to the development of drug resistance, which is particularly devastating in immunocompromised patients. Therefore, new classes of drugs directed against novel targets in HHVs are necessary to alleviate this issue. We analyzed the conservation rates of all proteins in herpes simplex virus 1 (HHV-1), a representative of the HHV family and one of the most common viruses infecting the human population. Furthermore, we generated a full-length structure model of the most conserved HHV-1 protein, the DNA packaging terminase pUL15. A series of computational analyses were performed on the model to identify ATP and DNA binding sites and characterize the dynamics of the protein. Our study indicates that proteins involved in HHV-1 DNA packaging and cleavage are amongst the most conserved gene products of HHVs. Since the packaging protein pUL15 is the most conserved among all HHV-1 gene products, the virus will have a lower chance of developing resistance to small molecules targeting pUL15. A subsequent analysis of the structure of pUL15 revealed distinct ATP and DNA binding domains and the elastic network model identifies a functionally important hinge region between the two domains of pUL15. The atomic information on the active and allosteric sites in the ATP- and DNA-bound model of pUL15 presented in this study can inform the structure-based drug discovery of a new class of drugs to treat a wide range of HHVs

    A survey and evaluation of the Draper high school

    Get PDF
    History. - The Draper High School is under the control of the Leaksville Township Public School Administrative Unit. The building was completed in 1939 and opened its doors as a Junior High School for the 1939-40 term, enrolling students from the first three high school grades. Until this time the high school students from Draper attended the Leaksville High School. The Draper School became a full-fledged four year high school in 1940-41 and has operated as such since that time. During the first two years of its operation the energy and attention of the administration were necessarily directed to physical problems and the securing of necessary equipment fundamental for the successful operation of the school. These first years were followed by the world crisis and war. During this period the greatest problem of the school, characteristic of so many schools throughout the country, was personnel. It was extremely difficult to find properly trained teachers to work for the inadequate salaries that the community was paying. As a result little could be done other than establish the conventional high school program

    Hinge Region in DNA Packaging Terminase pUL15 of Herpes Simplex Virus: A Potential Allosteric Target for Antiviral Drugs

    Get PDF
    Approximately 80% of adults are infected with a member of the herpesviridae family. Herpesviruses establish life-long latent infections within neurons, which may reactivate into lytic infections due to stress or immune suppression. There are nine human herpesviruses (HHV) posing health concerns from benign conditions to life threatening encephalitis, including cancers associated with viral infections. The current treatment options for most HHV conditions mainly include several nucleoside and nucleotide analogs targeting viral DNA polymerase. Although these drugs help manage infections, their common mechanism of action may lead to the development of drug resistance, which is particularly devastating in immunocompromised patients. Therefore, new classes of drugs directed against novel targets in HHVs are necessary to alleviate this issue. We analyzed the conservation rates of all proteins in herpes simplex virus 1 (HHV-1), a representative of the HHV family and one of the most common viruses infecting the human population. Furthermore, we generated a full-length structure model of the most conserved HHV-1 protein, the DNA packaging terminase pUL15. A series of computational analyses were performed on the model to identify ATP and DNA binding sites and characterize the dynamics of the protein. Our study indicates that proteins involved in HHV-1 DNA packaging and cleavage are amongst the most conserved gene products of HHVs. Since the packaging protein pUL15 is the most conserved among all HHV-1 gene products, the virus will have a lower chance of developing resistance to small molecules targeting pUL15. A subsequent analysis of the structure of pUL15 revealed distinct ATP and DNA binding domains and the elastic network model identifies a functionally important hinge region between the two domains of pUL15. The atomic information on the active and allosteric sites in the ATP- and DNA-bound model of pUL15 presented in this study can inform the structure-based drug discovery of a new class of drugs to treat a wide range of HHVs
    • …
    corecore