16 research outputs found

    Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling

    Get PDF
    Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders

    Laforin and malin deletions in mice produce similar neurologic impairments

    No full text
    9 páginasLafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A gene encoding laforin or in the EPM2B gene encoding malin. It is characterized by the presence of polyglucosan intracellular inclusion bodies (Lafora bodies) in brain and other tissues. Targeted disruption of Epm2a or Epm2b genes in mice produced widespread neuronal degeneration and accumulation of Lafora bodies in neuronal and nonneuronal tissues. Here we analyzed the neurologic alterations produced by disruption of the laforin gene in Epm2a−/− mice and compared them to those in malin-deficient mice. Both Epm2a−/− and Epm2b−/− mice showed altered motor activity, impaired motor coordination, abnormal hind limb clasping, and episodic memory deficits. Epm2a−/− mice also had tonic-clonic seizures, whereas both Epm2a−/− and Epm2b−/− mice had spontaneous single spikes, spike-wave, polyspikes, and polyspike-wave complexes with correlated myoclonic jerks. Neurologic alterations observed in the mutants were comparable and correlated with the accumulation of abundant Lafora bodies in the cerebral cortex, the hippocampus, the basal ganglia, the cerebellum, and the brainstem, suggesting that these inclusions could cause cognitive and behavioral deterioration. Thus, both Epm2a−/− and Epm2b−/− mice exhibit many pathologic aspects seen in patients with Lafora disease and may be valuable for the study of this disorderPeer reviewe

    Reactive Disruption of the Hippocampal Neurogenic Niche After Induction of Seizures by Injection of Kainic Acid in the Amygdala

    Get PDF
    Adult neurogenesis persists in the adult hippocampus due to the presence of multipotent neural stem cells (NSCs). Hippocampal neurogenesis is involved in a range of cognitive functions and is tightly regulated by neuronal activity. NSCs respond promptly to physiological and pathological stimuli altering their neurogenic and gliogenic potential. In a mouse model of mesial temporal lobe epilepsy (MTLE), seizures triggered by the intrahippocampal injection of the glutamate receptor agonist kainic acid (KA) induce NSCs to convert into reactive NSCs (React-NSCs) which stop producing new neurons and ultimately generate reactive astrocytes thus contributing to the development of hippocampal sclerosis and abolishing neurogenesis. We herein show how seizures triggered by the injection of KA in the amygdala, an alternative model of MTLE which allows parallel experimental manipulation in the dentate gyrus, also trigger the induction of React-NSCs and provoke the disruption of the neurogenic niche resulting in impaired neurogenesis. These results highlight the sensitivity of NSCs to the surrounding neuronal circuit activity and demonstrate that the induction of React-NSCs and the disruption of the neurogenic niche are not due to the direct effect of KA in the hippocampus. These results also suggest that neurogenesis might be lost in the hippocampus of patients with MTLE. Indeed we provide results from human MTLE samples absence of cell proliferation, of neural stem cell-like cells and of neurogenesis.This work was funded by the grants RyC-2012-11137 (MINECO) and SAF-2015-70866-R (MINECO with FEDER funds) to JE and PI_2016_0011 (Basque Government) to AS. This work was also supported by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) with grant Fondecyt regular 1141089, PIA Anillo en Investigacion en Ciencia y Tecnologia ACT 172121, and PIA Anillo ACT 1414

    Microglial phagocytic response during in vivo acute and chronic inflammatory challenge.

    No full text
    <p>(<b>A</b>) Experimental design and apoptosis in the DG of c57BL/6 fms-EGFP 1-mo mice injected systemically with LPS (1mg/kg; <i>n</i> = 5) or vehicle (saline; <i>n</i> = 4) 8 h prior to sacrifice. Apoptotic cells were identified by pyknosis/karryorhexis. <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.g002" target="_blank">Fig 2A</a></b> was generated from data that was originally published as part of [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.ref009" target="_blank">9</a>]. (<b>B</b>) Weighted Ph capacity of microglia (in parts per unit, ppu) in control and LPS mice. (<b>C</b>) Number of microglial cells in control and LPS mice. (<b>D</b>) Ph/A coupling in the 1-mo mouse hippocampus (in fold change) during acute inflammatory challenge. (<b>E</b>) Experimental design and representative confocal z-stacks of the DG of PND21 Swiss mice fed during gestation and lactation with a diet balanced (Ω3 bal; <i>n</i> = 7) or deficient (Ω3 def; <i>n</i> = 7) in the omega 3 polyunsaturated fatty acid, a diet that induces chronic inflammation in the hippocampus. Microglia were labeled with Iba1 (cyan) and apoptotic nuclei were detected by pyknosis/karyorrhexis (white, DAPI). Arrows point to apoptotic cells engulfed by microglia (M). Scale bars = 50 μm; z = 22.5μm. (<b>F</b>) Number of apoptotic (pyknotic/karyorrhectic) cells in mice fed with Ω3 balanced and deficient diets. (<b>G</b>) Ph index in the PND21 hippocampus (in % of apoptotic cells) in mice fed with Ω3 balanced and deficient diets. (<b>H</b>) Weighted Ph capacity of microglia (in ppu) in PND21 mice. (<b>I</b>) Histogram showing the Ph capacity distribution of microglia (in % of cells) in PND21 mice. (<b>J</b>) Total number of microglial cells (Iba1<sup>+</sup>) in PND21 mice. (<b>K</b>) Ph/A coupling in PND21 mice. Bars represent mean ± SEM. * indicates <i>p</i> < 0.05 and ** indicates <i>p</i> < 0.01 by one-tail Student´s <i>t</i> test. Underlying data is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s001" target="_blank">S1 Data</a></b>.</p

    Long-term impairment of microglial phagocytosis in mouse and human MTLE.

    No full text
    <p>(<b>A</b>) Representative confocal images of the DG of saline- and KA-injected mice at 4 mpi showing the nuclei (with DAPI, in white) and microglia (Iba1<sup>+</sup>, in cyan). Note the gross dispersion of the DG in KA injected mice (<b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s017" target="_blank">S4F Fig</a></b>). The number of apoptotic cells in control and KA-treated mice at 4 mpi is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s017" target="_blank">S4G Fig</a></b>. (<b>B</b>) Upper panel: representative confocal z-stack of an apoptotic cell (pyknotic, with DAPI, in white; arrowhead) located nearby a hypertrophic reactive astrocyte (rA; visualized with nestin-GFP<sup>+</sup>, in green) and a microglial cell (M; Iba1<sup>+</sup>, in cyan) at 4 mpi after KA. Lower panel: representative confocal z-stack of an apoptotic cell phagocytosed by microglia at 4 mpi after KA. A representative image of phagocytosis by a reactive astrocyte at 4 mpi after KA is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s017" target="_blank">S4H Fig</a></b>. (<b>C</b>) Ph index in the DG (% of apoptotic cells engulfed). (<b>D</b>) Histogram showing the distribution of the distance (in μm) of apoptotic cells to microglia at 4 mpi after KA (in %). (<b>E</b>) Density of microglial cells (in cells/mm<sup>3</sup>). (<b>F</b>) Microglial volume (in % of volume of DG occupied). (<b>G</b>) Representative confocal tiled image of a slice of the human hippocampus from an MTLE patient showing cell nuclei (with DAPI, white), neuronal nuclei (NeuN<sup>+</sup>, magenta), and microglia (Iba1<sup>+</sup>, cyan). (<b>H</b>) Representative confocal image of a nonphagocytosed apoptotic cell (pyknotic, with DAPI) adjacent to a microglial process (Iba1<sup>+</sup>) in the hippocampus of an MTLE patient. (<b>I</b>) Representative confocal image of phagocytosis by a ball-and-chain mechanism in the hippocampus from an individual with MTLE. The apoptotic cell (pyknotic, with DAPI in white; arrow) was engulfed by a terminal branch of a nearby microglia (Iba1<sup>+</sup>, cyan). The right panel shows an orthogonal projection of the same cell, where the 3-D engulfment is evident. (<b>J</b>) Representative confocal z-stack of phagocytosis by an aster mechanism in the hippocampus from an individual with MTLE. The apoptotic cell (pyknotic, with DAPI in white; arrow) was engulfed by a mesh of processes from many surrounding microglia (Iba1<sup>+</sup>, cyan; M). The right panel shows an orthogonal projection of the same cell. (<b>K</b>) Representative confocal z-stack of a granule neuron in the DG (NeuN<sup>+</sup>, magenta; arrow) targeted by the processes of several surrounding microglia (Iba1<sup>+</sup>). Nuclei are shown in white (DAPI). The right panel shows an orthogonal projection of the same neuron directly targeted the processes of up to three microglia (M). Another example is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s021" target="_blank">S8A Fig</a></b> and further data in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s029" target="_blank">S1 Table</a></b>. (<b>L</b>) Ph index in the human DG (% of apoptotic cells engulfed). (<b>M</b>) Density of microglial cells (in cells/mm<sup>3</sup>) in the DG of three hippocampal samples from human MTLE patients. (<b>N</b>) Histogram showing the distribution of the distance of apoptotic cells (in %) to Iba1<sup>+</sup> microglial processes in the DG of MTLE patients (<i>n</i> = 21 cells from 3 patients). (<b>O</b>) Microglial volume (in % of volume of DG occupied) in the three hippocampal samples from individuals with MTLE. Bars represent mean ± SEM (C, E, F), the individual values of all the pooled cells for each patient (L), the average values for measures in different z-stacks for each patient (M, O), or the sum of cells in each distance slot (D, N). ** represents <i>p</i> < 0.01 by Student´s <i>t</i> test (C, E, F). Scale bars = 50μm (A, K), 10 μm (B, H, I), 1 mm (G), 20 μm (J). <i>z</i> = 25 μm (A), 6.6 μm (B, upper panel), 12.7 μm (B, lower panel), 2.8 μm (H), 2.6 μm (I), 5.2 μm (J), 12 μm (K). Underlying data is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s001" target="_blank">S1 Data</a></b>.</p

    Phagocytosis impairment is not directly mediated by glutamate receptors on microglia.

    No full text
    <p>(<b>A, B</b>) Experimental design for RTqPCR expression of KA, NMDA, AMPA and metabotropic, receptor subunits in acutely purified microglia (FACS-sorted) from the hippocampus and the cortex of 2 mo mice (<i>n</i> = 4 samples of 8 pooled hippocampi and cortices each). The relative expression was compared to a positive control, a PND8 hippocampus, except for Grm6, where the retina from a 2-mo mouse was used. L27A was used as a reference gene. Amplification plots and denaturing curves for each target gene are shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s022" target="_blank">S9 Fig</a></b>. (<b>C</b>) Experimental design and representative projections of confocal z-stacks of organotypic slices from fms-EGFP mice treated with vehicle (control) or KA (1 mM) for 6 h. The number of apoptotic cells, Ph capacity, and number of microglia in the DG is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s023" target="_blank">S10A–S10C Fig</a></b>. (<b>D</b>) Ph index in the DG organotypic slices (in % of apoptotic cells). (<b>E</b>) Ph/A coupling (in fold-change) in organotypic slices treated with KA. (<b>F</b>) Experimental design to test the effect of KA on microglial phagocytosis in vitro. Primary cultures were pre-treated with KA (1 mM) for 2 h prior to adding apoptotic NE-4C cells (treated with 5 μM CM-DiI for 25 min and 10 μM staurosporine for 4 h). NE-4C cells were left in the culture for another 3 h in the presence or absence of KA. (<b>G</b>) Representative confocal z-stacks of fms-EGFP<sup>+</sup> microglia phagocytosing apoptotic CM-DiI<sup>+</sup> NE-4C cells. (<b>H</b>) Percentage of phagocytic microglia in cultures (<i>n</i> = 2 independent experiments in triplicate). Bars represent mean ± SEM. ** indicates <i>p</i> < 0.01 by Student´s <i>t</i> test (H). Scale bars = 30 μm (C, G). z = 6.3 μm (F, J). Underlying data is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s001" target="_blank">S1 Data</a></b>.</p

    Early phagocytic impairment is related to reduced expression of phagocytosis receptors and reduced motility.

    No full text
    <p>(<b>A</b>) Experimental design and expression of phagocytosis and purinergic receptors by RTqPCR in FACS-sorted microglia from control and KA mice at 1 dpi (<i>n</i> = 3 from 8 pooled hippocampi). HPRT was used as a reference gene. (<b>B</b>) Experimental design and representative projections of 2-photon microscopy images of microglia at t0 (cyan) and 15 min later (magenta) from the DG of controls and KA-treated mice (1 dpi). (<b>C</b>) Motility of microglial processes by 2-photon microscopy in acute slices from CX3CR1<sup>GFP/+</sup> mice after in vivo injection of KA (1 dpi; <i>n</i> = 4–5 cells from 3–4 mice per group). (<b>D</b>) Retraction and protraction of microglial processes by 2-photon microscopy in acute slices from CX3CR1<sup>GFP/+</sup> mice after in vivo injection of KA (1 dpi). (<b>E</b>) Experimental design and representative projections of 2-photon images of microglia at t0 (cyan) and 13.5 min (magenta) in the cortex of controls and KA-treated mice (1 dpi). (<b>F</b>) Motility of microglial processes by 2-photon microscopy in the living cortex of CX3CR1<sup>GFP/+</sup> mice after the injection of KA (1 dpi; <i>n</i> = 6 cells from 3 mice per group). (<b>G</b>) Retraction and protraction of microglial processes by 2-photon microscopy in the living cortex of CX3CR1<sup>GFP/+</sup> mice after the injection of KA. Bars represent mean ± SEM. * indicates <i>p</i> < 0.05, ** indicates <i>p</i> < 0.01, and *** indicates <i>p</i> < 0.001 by Student´s <i>t</i> test (A, C, D). Scale bars = 20 μm (B), 50 mm (E). z = 50 μm (A), 40 μm (B). Underlying data is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s001" target="_blank">S1 Data</a></b>.</p

    Microglial phagocytosis is impaired early (1 dpi) due to MTLE seizures in vivo.

    No full text
    <p>(<b>A</b>) Hippocampal electroencephalographic recordings of mice injected in the ipsilateral side (I) with KA (50 nL, 20 mM) during status epilepticus (0 dpi) and during a spontaneous seizure occurring in the chronic phase of MTLE (49 dpi). The contralateral hippocampus (C) is shown for comparison purposes. (<b>B</b>) Representative confocal z-stacks of saline and KA (1 dpi) hippocampi labeled with DAPI (nuclear morphology, white), activated caspase 3 (act-casp3<sup>+</sup>, red, for apoptotic cells), and fms-EGFP (cyan, microglia). (<b>C</b>) Number of apoptotic cells (pyknotic/karyorrhectic and act-casp3<sup>+</sup>) in the septal DG (<i>n</i> = 3−9 per time point and treatment). The volume of the septal DG is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s016" target="_blank">S3B Fig</a></b>. (<b>D</b>) Representative confocal image of a nonphagocytosed apoptotic (pyknotic and act-casp3<sup>+</sup>, arrowhead) cell in the SGZ (orthogonal projection, left; and 3-D-rendered image, right). M, microglial cell body. (<b>E</b>) Representative 3-D-rendered confocal z-stack of apoptotic (pyknotic and act-casp3<sup>+</sup>) cells, phagocytosed (arrow) or not (arrowheads) in the septal DG of mice treated with KA at 1 dpi. M, microglial cell body. (<b>F</b>) Representative 3-D-rendered confocal z-stack of an apoptotic (pyknotic), nonphagocytosed cells (arrowhead) in the DG of mice treated with KA at 1 dpi. The arrow points to a semiengulfed apoptotic cell. M, microglial cell body. (<b>G</b>) Ph index in the septal DG (in % of apoptotic cells) after KA. Phagocytosis by astrocytes and neuroblasts is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s016" target="_blank">S3C and S3E Fig</a></b>. (<b>H</b>) Weighted Ph capacity of DG microglia (in ppu). (<b>I</b>) Histogram showing the Ph capacity distribution of microglia (in % of cells) in the DG. (<b>J</b>) Total number of microglial cells (fms-EGFP<sup>+</sup>) in the septal DG. Microglial density is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s016" target="_blank">S3A Fig</a></b>. (<b>K</b>) Ph/A coupling (in fold change) in the septal DG. (<b>L</b>) Histogram showing the distribution of the distance (in μm) of apoptotic cells (in %) to microglial processes. The average distance of apoptotic cells to microglia is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s016" target="_blank">S3F Fig</a></b>. Bars represent mean ± SEM except in L, where they indicate the sum of cells in each distance slot. * indicates <i>p</i> < 0.05, ** indicates <i>p</i> < 0.01, and *** indicates <i>p</i> < 0.001 by Holm-Sidak posthoc test after two-way ANOVA (H–K) or one-way ANOVA (C, G, where a significant interaction time x treatment was found) were significant at <i>p</i> < 0.05. Scale bars = 50 μm (B), 10 μm (D–F). z = 25 μm (B), 13.9 μm (D), 14.1 μm (E), 8.4 μm (F). Underlying data is shown in <b><a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002466#pbio.1002466.s001" target="_blank">S1 Data</a></b>.</p
    corecore