40 research outputs found

    AP2γ: a new player on adult hippocampal neurogenesis regulation

    Get PDF
    Since the recognition that the mammalian brain retains the ability to generate newborn neurons with functional relevance throughout life, the matrix of molecular regulators that govern adult neurogenesis has been the focus of much interest. In a recent study published in Molecular Psychiatry, we demonstrate Activating Protein 2γ (AP2γ), a transcription factor previously implicated in cell fate determination in the developing cortex, as a novel player in the regulation of glutamatergic neurogenesis in the adult hippocampus. Using distinct experimental approaches, we showed that AP2γ is specifically present in a subpopulation of transient amplifying progenitors, where it acts as a crucial promoter of proliferation and differentiation of adult-born glutamatergic granule neurons. Strikingly, deficiency of AP2γ in the adult brain compromises the generation of new glutamatergic neurons, with impact on the function of cortico-limbic circuits. Here, we share our view on how AP2γ integrates the transcriptional orchestration of glutamatergic neurogenesis in the adult hippocampus, and consequently, how it emerges as a novel molecular candidate to study the translation of environmental pressures into alterations of brain neuroplasticity in homeostatic, but also in neuropathological contexts.Bial Foundation (427/14); Northern Portugal Regional Operational Programme (NORTE 2020); European Regional Development Fund (FEDER) (projects NORTE-01-0145-FEDER-000013 e NORTE-01-0145-FEDER-000023); Competitiveness Factors Operational Programme (COMPETE)info:eu-repo/semantics/publishedVersio

    Identification of target genes of transcription factor activator protein 2 gamma in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activator protein 2 gamma (AP-2γ) is a member of the transcription factor activator protein-2 (AP-2) family, which is developmentally regulated and plays a role in human neoplasia. AP-2γ has been found to be overexpressed in most breast cancers, and have a dual role to inhibit tumor initiation and promote tumor progression afterwards during mammary tumorigensis.</p> <p>Methods</p> <p>To identify the gene targets that mediate its effects, we performed chromatin immunoprecipitation (ChIP) to isolate AP-2γ binding sites on genomic DNA from human breast cancer cell line MDA-MB-453.</p> <p>Results</p> <p>20 novel DNA fragments proximal to potential AP-2γ targets were obtained. They are categorized into functional groups of carcinogenesis, metabolism and others. A combination of sequence analysis, reporter gene assays, quantitative real-time PCR, electrophoretic gel mobility shift assays and immunoblot analysis further confirmed the four AP-2γ target genes in carcinogenesis group: ErbB2, CDH2, HPSE and IGSF11. Our results were consistent with the previous reports that ErbB2 was the target gene of AP-2γ. Decreased expression and overexpression of AP-2γ in human breast cancer cells significantly altered the expression of these four genes, indicating that AP-2γ directly regulates them.</p> <p>Conclusion</p> <p>This suggested that AP-2γ can coordinate the expression of a network of genes, involving in carcinogenesis, especially in breast cancer. They could serve as therapeutic targets against breast cancers in the future.</p

    A Novel Escherichia coli O157:H7 Clone Causing a Major Hemolytic Uremic Syndrome Outbreak in China

    Get PDF
    An Escherichia coli O157:H7 outbreak in China in 1999 caused 177 deaths due to hemolytic uremic syndrome. Sixteen outbreak associated isolates were found to belong to a new clone, sequence type 96 (ST96), based on multilocus sequence typing of 15 housekeeping genes. Whole genome sequencing of an outbreak isolate, Xuzhou21, showed that the isolate is phylogenetically closely related to the Japan 1996 outbreak isolate Sakai, both of which share the most recent common ancestor with the US outbreak isolate EDL933. The levels of IL-6 and IL-8 of peripheral blood mononuclear cells induced by Xuzhou21 and Sakai were significantly higher than that induced by EDL933. Xuzhou21 also induced a significantly higher level of IL-8 than Sakai while both induced similar levels of IL-6. The expression level of Shiga toxin 2 in Xuzhou21 induced by mitomycin C was 68.6 times of that under non-inducing conditions, twice of that induced in Sakai (32.7 times) and 15 times higher than that induced in EDL933 (4.5 times). Our study shows that ST96 is a novel clone and provided significant new insights into the evolution of virulence of E. coli O157:H7

    Nutrient Control of Yeast PKA Activity Involves Opposing Effects on Phosphorylation of the Bcy1 Regulatory Subunit

    Get PDF
    Kelch repeat proteins Gpb1 and Gpb2 control yeast PKA activity in response to nutrients by stimulating phosphorylation of the Bcy1 regulatory subunit. Gpb1 and Gpb2 function by blocking inhibition of Bcy1 phosphorylation by PKA catalytic subunits. Phosphorylated Bcy1 is more stable and is a more effective inhibitor of PKA activity

    The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response

    Get PDF
    The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans

    Memory Enhancement by Targeting CDK5 Regulation of NR2B

    Get PDF
    SummaryMany psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers because of its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when overexpressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor’s cell surface expression. Disrupting NR2B-Cdk5 interaction via a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers.Video Abstrac

    Mucopolysaccharidosis Type I Presenting with Persistent Neonatal Respiratory Distress: A Case Report

    No full text
    Mucopolysaccharidosis type I (MPS I) is a rare inherited autosomal recessive lysosomal storage disorder. Despite several reports on MPS I-related neonatal interstitial lung disease, it is still considered to be an under-recognized disease manifestation. Thus, further study of MPS I is required to improve specific therapies and management strategies. The current report describes a late preterm baby (36 weeks gestational age) with neonatal onset of interstitial lung disease eventually diagnosed as MPS I. The neonate required prolonged respiratory support and oxygen supplementation that further escalated the likely diagnosis of inherited disorders of pulmonary surfactant dysfunction. Whole-exome sequencing confirmed the diagnosis of MPS I, following the observation of low levels of the enzyme α-L-iduronidase. The results highlight the necessity of considering MPS I-related pulmonary involvement in newborns with persistent respiratory insufficiency

    Fibroblast Growth Factor Receptor 3 Associates with and Tyrosine Phosphorylates p90 RSK2, Leading to RSK2 Activation That Mediates Hematopoietic Transformation▿

    No full text
    Dysregulation of the receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) plays a pathogenic role in a number of human hematopoietic malignancies and solid tumors. These include t(4;14) multiple myeloma associated with ectopic expression of FGFR3 and t(4;12)(p16;p13) acute myeloid leukemia associated with expression of a constitutively activated fusion tyrosine kinase, TEL-FGFR3. We recently reported that FGFR3 directly tyrosine phosphorylates RSK2 at Y529, which consequently regulates RSK2 activation. Here we identified Y707 as an additional tyrosine in RSK2 that is phosphorylated by FGFR3. Phosphorylation at Y707 contributes to RSK2 activation, through a putative disruption of the autoinhibitory αL-helix on the C terminus of RSK2, unlike Y529 phosphorylation, which facilitates ERK binding. Moreover, we found that FGFR3 interacts with RSK2 through residue W332 in the linker region of RSK2 and that this association is required for FGFR3-dependent phosphorylation of RSK2 at Y529 and Y707, as well as the subsequent RSK2 activation. Furthermore, in a murine bone marrow transplant assay, genetic deficiency in RSK2 resulted in a significantly delayed and attenuated myeloproliferative syndrome induced by TEL-FGFR3 as compared with wild-type cells, suggesting a critical role of RSK2 in FGFR3-induced hematopoietic transformation. Our current and previous findings represent a paradigm for tyrosine phosphorylation-dependent regulation of serine-threonine kinases
    corecore