42 research outputs found

    Unveiling the relative efficacy, safety and tolerability of prophylactic medications for migraine: pairwise and network-meta analysis

    Get PDF
    Ranking of migraine interventions using SUCRA values. (DOCX 17 kb

    Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers.

    Get PDF
    As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO2) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO2, and eCO2 + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO2, while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO2 and warming on soil functional processes were similar to eCO2 alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO2 alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change

    Global diversity and biogeography of bacterial communities in wastewater treatment plants

    Get PDF
    Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes

    Carvacrol, a Food-Additive, Provides Neuroprotection on Focal Cerebral Ischemia/Reperfusion Injury in Mice

    Get PDF
    Carvacrol (CAR), a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg) significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials

    Stress Field Simulation of Single Crystal Turbine Blade During Unidirectional Solidification

    No full text
    According to the bottle neck problem about low size precision and large wall thickness deviation of the single crystal turbine blade, considering the inaccuracy factors of boundary conditions during unidirectional solidification process, the contact element method was used to study the interaction between the blade and the shuttering. Meanwhile, the practice temperature field data,the finite element method with the coupled stress field and temperature field, were used to simulate the unidirectional solidification of the single crystal turbine blade. Based on the analysis result, the stress distributing and blade deformation were qualitatively discussed. The result indicates that the max-residual stress presents at the root air-inlets, and the max-residual stress of root air-inlets is 28.4% higher than that of blade-body. The dynamic change of the temperature and the stress can basically been reflected by the coupled temperature/stress method. It can provide references for modifying process for reducing the cast residual stress, improving dimensional accuracy and dimensional stability in the unidirectional solidification process

    Effect of cold rolling deformation and heat treatment on microstructure and hardness of GH4169 alloy plate

    No full text
    Cold rolling and heat treatment experiments of GH4169 alloy with different deformation were carried out. Effect of different cold rolling deformation and heat treatment state on microstructure and hardness of plate was analyzed. Cold rolling experimental results show that dislocation density is increased, dislocations are cross slipped, deformation texture are enhanced, twins boundaries are decreased and hardness is improved with the increasing of deformation. Different heat treatment experimental results show that when the cold rolling deformation within 0%-20%, after 980 ℃×10 min solution treatment, the recrystallization is incepted, grains are refined, deformed grains and dislocation are remained in the plate. When the deformation within 0%-20%, deformed grains are remained and recrystallized grain size is refined with the increasing of deformation, thus the hardness of solution treated plate is increased with the increasing of deformation. The recrystallization finished and work hardening is eliminated,thus the hardness of solution treated plate decline to undeformed level and remains unchanged when the deformation larger than 25%. The Ξ³' and Ξ³'' phases are precipitated in the plate after aging heat treatment, and the hardness of the plate is significantly higher than that of the cold rolled and solid solution treatment states, and the hardness is basically not affected by the deformation amount of cold rolling. The threshold value of cold rolling deformation for recrystallization inception of GH4169 alloy is within 5%-10% during 980 ℃ solution treatment. And the cold rolling deformation threshold value of complete recrystallization is about 25%. According to actual production condition, the optimal cold rolling deformation is larger than 25%, and the matched solution treatment is 980 ℃×10 min
    corecore