183 research outputs found

    The Organic Amendment Improve the Yield and Quality of Vegetable

    Get PDF
    Using biotechnology, we can change agricultural wastes into high‐quality organic fertilizers, which leads us in the direction of the development in modern agriculture and act as substitute to the chemical fertilizers. In this chapter, five types of technologies of organic amendment are elaborated. Each method can be selected based on the specific circumstance. The effects of the technology in the production are introduced and the principles of the technologies are explained in a simple manner

    Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators

    Get PDF
    It is shown that the requirements for high quality electron bunch generation and trapping from an underdense photocathode in plasma wakefield accelerators can be substantially relaxed through localizing it on a plasma density downramp. This depresses the phase velocity of the accelerating electric field until the generated electrons are in phase, allowing for trapping in shallow trapping potentials. As a consequence the underdense photocathode technique is applicable by a much larger number of accelerator facilities. Furthermore, dark current generation is effectively suppressed.Comment: 4 pages, 3 figure

    Adiabatic plasma lens experiments at SPARC

    Get PDF
    Abstract Passive plasma lenses in the underdense regime have been shown to give extremely strong linear focusing, with strength proportional to the local plasma ion density. This technique has been proposed as the basis of a scheme for future linear colliders that mitigates the Oide effect through adiabatic focusing. In this scenario the plasma density in the lens is ramped slowly on the scale of betatron motion, to funnel the beam to its final focus while forgiving chromatic aberrations. We present to the physics design of an adiabatic plasma lens experiment to be performed at SPARC Lab. We illustrate the self-consistent plasma response and associated beam optics for symmetric beams in plasma, simulated by QuickPIC using exponentially rising density profiles. We discuss experimental plans including plasma source development and betatron-radiation-based beam diagnostics

    A mRNA Vaccine Encoding for a RBD 60-mer Nanoparticle Elicits Neutralizing Antibodies and Protective Immunity Against the SARS-CoV-2 Delta Variant in Transgenic K18-hACE2 Mice.

    Get PDF
    Two years into the COVID-19 pandemic there is still a need for vaccines to effectively control the spread of novel SARS-CoV-2 variants and associated cases of severe disease. Here we report a messenger RNA vaccine directly encoding for a nanoparticle displaying 60 receptor binding domains (RBDs) of SARS-CoV-2 that acts as a highly effective antigen. A construct encoding the RBD of the Delta variant elicits robust neutralizing antibody response, and also provides protective immunity against the Delta variant in a widely used transgenic mouse model. We ultimately find that the proposed mRNA RBD nanoparticle-based vaccine provides a flexible platform for rapid development and will likely be of great value in combatting current and future SARS-CoV-2 variants of concern

    Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quinolone resistance in <it>Enterobacteriaceae </it>results mainly from mutations in type II DNA topoisomerase genes and/or changes in the expression of outer membrane and efflux pumps. Several recent studies have indicated that plasmid-mediated resistance mechanisms also play a significant role in fluoroquinolone resistance, and its prevalence is increasing worldwide. In China, the presence of the <it>qnr </it>gene in the clinical isolates of <it>Enterobacteriaceae </it>has been reported, but this transmissible quinolone resistance gene has not been detected in strains isolated singly from pediatric patients. Because quinolones associated with a variety of adverse side effects on children, they are not authorized for pediatric use. This study therefore aimed to investigate the presence of the <it>qnr </it>gene in clinical isolates of <it>E. coli </it>and <it>K. pneumoniae </it>from pediatric patients in China.</p> <p>Methods</p> <p>A total 213 of non-repetitive clinical isolates resistant to ciprofloxacin from <it>E. coli </it>and <it>K. pneumoniae </it>were collected from hospitalized patients at five children's hospital in Beijing, Shanghai, Guangzhou, and Chongqing. The isolates were screened for the plasmid-mediated quinolone resistance genes of <it>qnrA</it>, <it>qnrB</it>, and <it>qnrS </it>by PCR. Transferability was examined by conjugation with the sodium azide-resistant <it>E. coli </it>J53. All <it>qnr</it>-positive were analyzed for clonality by enterobacterial repetitive intergenic consensus (ERIC)-PCR.</p> <p>Results</p> <p>The study found that 19 ciprofloxacin-resistant clinical isolates of <it>E. coli </it>and <it>K. pneumoniae </it>were positive for the <it>qnr </it>gene, and most of the <it>qnr </it>positive strains were ESBL producers. Conjugation experiments showed that quinolone resitance could be transferred to recipients. Apart from this, different DNA banding patterns were obtained by ERIC-PCR from positive strains, which means that most of them were not clonally related.</p> <p>Conclusion</p> <p>This report on transferable fluoroquinolone resistance due to the <it>qnr </it>gene among <it>E. coli </it>and <it>K. pneumoniae </it>strains indicated that plasmid-mediated quinolone resistance has emerged in pediatric patients in China.</p

    Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Get PDF
    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement

    Plasma-photonic spatiotemporal synchronization of relativistic electron and laser beams

    Get PDF
    Modern particle accelerators and their applications increasingly rely on precisely coordinated interactions of intense charged particle and laser beams. Femtosecond-scale synchronization alongside micrometre-scale spatial precision are essential e.g. for pump-probe experiments, seeding and diagnostics of advanced light sources and for plasma-based accelerators. State-of-the-art temporal or spatial diagnostics typically operate with low-intensity beams to avoid material damage at high intensity. As such, we present a plasma-based approach, which allows measurement of both temporal and spatial overlap of high-intensity beams directly at their interaction point. It exploits amplification of plasma afterglow arising from the passage of an electron beam through a laser-generated plasma filament. The corresponding photon yield carries the spatiotemporal signature of the femtosecond-scale dynamics, yet can be observed as a visible light signal on microsecond-millimetre scales
    corecore