163 research outputs found
Recommended from our members
Automated Radiosynthesis of [11C]UCB-J for Imaging Synpatic Density by PET
An automated radiosynthesis of carbon-11 PET radiotracer [11C]UCB-J for imaging the synaptic density biomarker synaptic vesicle glycoprotein SV2A was established using Synthra RNPlus synthesizer. Commercially available trifluoroborate UCB-J analogue was used as a radiolabelling precursor and the desired radiolabelled product was isolated in 11 ± 2% (n = 7) non-decay corrected radiochemical yield and formulated as a 10% EtOH solution in saline with molar activities of 20-100 GBq/μmol. The method was based upon the palladium(0)-mediated Suzuki cross-coupling reaction and [11C]CH3I as a radiolabelling synthon. The isolated product was cGMP compliant as demonstrated by the results of quality control analysis.National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Medical Research Council grant MR/K02308X/1
Recommended from our members
Validation of reference tissue modelling for [11C]flumazenil positron emission tomography following head injury.
OBJECTIVE: [(11)C]Flumazenil ([(11)C]FMZ) positron emission tomography (PET) can be used as a measure of neuronal loss. The purpose of this study was to validate reference tissue kinetic modelling of [(11)C]FMZ PET within a group of patients with head injury. METHODS: Following earlier studies, the pons was used as the reference region. PET scans were performed on 16 controls and 11 patients at least 6 months following injury, each of whom also had arterial blood sampling to provide whole blood and metabolite-corrected plasma input functions. Regional non-displaceable binding potentials (BP(ND)) were calculated from five reference tissue models and compared to BP(ND) from arterial input models. For the patients, the regions included a peri-lesional region of interest (ROI). RESULTS: Total distribution volume of the pons was not significantly different between control and patient groups (P = 0.24). BP(ND) from all the reference tissue approaches correlated well with BP(ND) from the plasma input models for both controls (r (2) = 0.98-1.00; P < 0.001) and patients (r (2) = 0.99-1.00; P < 0.001). For the peri-lesional regions (n = 11 ROI values), the correlation was also high (r (2) = 0.91). CONCLUSIONS: These results indicate that reference tissue modelling with the pons as the reference region is valid for [(11)C]FMZ PET in head-injured patients at 6 months following injury within both normal appearing and peri-lesional brain regions
Synthesis, in vitro evaluation, and radiolabeling of fluorinated puromycin analogues: potential candidates for PET imaging of protein synthesis
There is currently no ideal radiotracer for imaging protein synthesis rate (PSR) by positron emission tomography (PET). Existing fluorine-18 labelled amino acid-based radiotracers predominantly visualize amino acid transporter processes, and in many cases they are not incorporated into nascent proteins at all. Others are radiolabelled with the short half-life positron emitter carbon-11 which is rather impractical for many PET centers. Based on the puromycin (6) structural manifold, a series of 10 novel derivatives of 6 was prepared via Williamson ether synthesis from a common intermediate. A bioluminescence assay was employed to study their inhibitory action on protein synthesis which identified fluoroethyl analogue (7b) as a lead compound. The fluorine-18 analogue was prepared via nucleophilic substitution of the corresponding tosylate precursor in modest radiochemical yield 2±0.6% and excellent radiochemical purity (>99%) and showed complete stability over 3 h at ambient temperature
Recommended from our members
Assessing the Effects of Cytoprotectants on Selective Neuronal Loss, Sensorimotor Deficit and Microglial Activation after Temporary Middle Cerebral Occlusion.
Although early reperfusion after stroke salvages the still-viable ischemic tissue, peri-infarct selective neuronal loss (SNL) can cause sensorimotor deficits (SMD). We designed a longitudinal protocol to assess the effects of cytoprotectants on SMD, microglial activation (MA) and SNL, and specifically tested whether the KCa3.1-blocker TRAM-34 would prevent SNL. Spontaneously hypertensive rats underwent 15 min middle-cerebral artery occlusion and were randomized into control or treatment group, which received TRAM-34 intraperitoneally for 4 weeks starting 12 h after reperfusion. SMD was assessed longitudinally using the sticky-label test. MA was quantified at day 14 using in vivo [11C]-PK111195 positron emission tomography (PET), and again across the same regions-of-interest template by immunofluorescence together with SNL at day 28. SMD recovered significantly faster in the treated group (p = 0.004). On PET, MA was present in 5/6 rats in each group, with no significant between-group difference. On immunofluorescence, both SNL and MA were present in 5/6 control rats and 4/6 TRAM-34 rats, with a non-significantly lower degree of MA but a significantly (p = 0.009) lower degree of SNL in the treated group. These findings document the utility of our longitudinal protocol and suggest that TRAM-34 reduces SNL and hastens behavioural recovery without marked MA blocking at the assessed time-points
Cortical tau is associated with microstructural imaging biomarkers of neurite density and dendritic complexity in Alzheimer's disease
INTRODUCTION: In Alzheimer's disease (AD), hyperphosphorylated tau is closely associated with focal neurodegeneration, but the mechanism remains uncertain. METHODS: We quantified cortical microstructure using neurite orientation dispersion and density imaging in 14 individuals with young onset AD. Diffusion tensor imaging measured mean diffusivity (MD). Amyloid beta and tau positron emission tomography were acquired and associations with microstructural measures were assessed. RESULTS: When regional volume was adjusted for, in the medial temporal lobe there was a significant negative association between neurite density and tau (partial R2  = 0.56, p = 0.008) and between orientation dispersion and tau (partial R2  = 0.66, p = 0.002), but not between MD and tau. In a wider cortical composite, there was an association between orientation dispersion and tau (partial R2  = 0.43, p = 0.030), but not between other measures and tau. DISCUSSION: Our findings are consistent with tau causing first dendritic pruning (reducing dispersion/complexity) followed by neuronal loss. Advanced magnetic resonance imaging (MRI) microstructural measures have the potential to provide information relating to underlying tau deposition
Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man.
Modern ischaemic stroke management involves intravenous thrombolysis followed by mechanical thrombectomy, which allows markedly higher rates of recanalization and penumbral salvage than thrombolysis alone. However, <50% of treated patients eventually enjoy independent life. It is therefore important to identify complementary therapeutic targets. In rodent models, the salvaged penumbra is consistently affected by selective neuronal loss, which may hinder recovery by interfering with plastic processes, as well as by microglial activation, which may exacerbate neuronal death. However, whether the salvaged penumbra in man is similarly affected is still unclear. Here we determined whether these two processes affect the non-infarcted penumbra in man and, if so, whether they are inter-related. We prospectively recruited patients with (i) acute middle-cerebral artery stroke; (ii) penumbra present on CT perfusion obtained <4.5 h of stroke onset; and (iii) early neurological recovery as a marker of penumbral salvage. PET with 11C-flumazenil and 11C-PK11195, as well as MRI to map the final infarct, were obtained at predefined follow-up times. The presence of selective neuronal loss and microglial activation was determined voxel-wise within the MRI normal-appearing ipsilateral non-infarcted zone and surviving penumbra masks, and their inter-relationship was assessed both across and within patients. Dilated infarct contours were consistently excluded to control for partial volume effects. Across the 16 recruited patients, there was reduced 11C-flumazenil and increased 11C-PK11195 binding in the whole ipsilateral non-infarcted zone (P = 0.04 and 0.02, respectively). Within the non-infarcted penumbra, 11C-flumazenil was also reduced (P = 0.001), but without clear increase in 11C-PK11195 (P = 0.18). There was no significant correlation between 11C-flumazenil and 11C-PK11195 in either compartment. This mechanistic study provides direct evidence for the presence of both neuronal loss and microglial activation in the ipsilateral non-infarcted zone. Further, we demonstrate the presence of neuronal loss affecting the surviving penumbra, with no or only mild microglial activation, and no significant relationship between these two processes. Thus, microglial activation may not contribute to penumbral neuronal loss in man, and its presence in the ipsilateral hemisphere may merely reflect secondary remote degeneration. Selective neuronal loss in the surviving penumbra may represent a novel therapeutic target as an adjunct to penumbral salvage to further improve functional outcome. However, microglial activation may not stand as the primary therapeutic approach. Protecting the penumbra by acutely improving perfusion and oxygenation in conjunction with thrombectomy for example, may be a better approach. 11C-flumazenil PET would be useful to monitor the effects of such therapies
Recommended from our members
18 F-AV1451 PET imaging and multimodal MRI changes in progressive supranuclear palsy
Funder: PSP Association; doi: http://dx.doi.org/10.13039/100011707Abstract: Objectives: Progressive supranuclear palsy (PSP) is characterized by deposition of straight filament tau aggregates in the grey matter (GM) of deep nuclei and cerebellum. We examined the relationship between tau pathology (assessed via 18F-AV1451 PET) and multimodal MRI imaging using GM volume, cortical thickness (CTh), and diffusion tensor imaging (DTI). Methods: Twenty-three people with clinically probable PSP-Richardson’s syndrome (age 68.8 ± 5.8 years, 39% female) and 23 controls underwent structural 3 T brain MRI including DTI. Twenty-one patients also had 18F-AV1451 PET imaging. Voxelwise volume-based morphometry, surface-based morphometry, and DTI correlations were performed with 18F-AV1451 binding in typical PSP regions of interest (putamen, thalamus and dentate cerebellum). Clinical impairment was also assessed in relation to the different imaging modalities. Results: PSP subjects showed GM volume loss in frontotemporal regions, basal ganglia, midbrain, and cerebellum (FDR-corrected p < 0.05), reduced CTh in the left entorhinal and fusiform gyrus (p < 0.001) as well as DTI changes in the corpus callosum, internal capsule, and superior longitudinal fasciculus (FWE-corrected p < 0.05). In PSP, higher 18F-AV1451 binding correlated with GM volume loss in frontal regions, DTI changes in motor tracts, and cortical thinning in parietooccipital areas. Cognitive impairment was related to decreased GM volume in frontotemporal regions, thalamus and pallidum, as well as DTI alteration in corpus callosum and cingulum. Conclusion: This cross-sectional study demonstrates an association between in vivo proxy measures of tau pathology and grey and white matter degeneration in PSP. This adds to the present literature about the complex interplay between structural changes and protein deposition
Delineating the topography of amyloid-associated cortical atrophy in Down syndrome
Older adults with Down syndrome (DS) often have Alzheimer's disease (AD) neuropathologies. Although positron emission tomography imaging studies of amyloid deposition (beta amyloid, Aβ) have been associated with worse clinical prognosis and cognitive impairment, their relationships with cortical thickness remain unclear in people with DS. In a sample of 44 DS adults who underwent cognitive assessments, [C]-PiB positron emission tomography, and T1-weighted magnetization-prepared rapid gradient echo, we used mixed effect models to evaluate the spatial relationships between Aβ binding with patterns of cortical thickness. Partial Spearman correlations were used to delineate the topography of local Aβ-associated cortical thinning. [C]-PiB nondisplaceable binding potential was negatively associated with decreased cortical thickness. Locally, regional [C]-PiB retention was negatively correlated with cortical thickness in widespread cortices, predominantly in temporoparietal regions. Contrary to the prevailing evidence in established AD, we propose that our findings implicate Aβ in spatial patterns of atrophy that recapitulated the “cortical signature” of neurodegeneration in AD, conferring support to recent recommendations for earlier disease-interventions
Dissociable rate-dependent effects of oral methylphenidate on impulsivity and D2/3 receptor availability in the striatum.
We have previously shown that impulsivity in rats is linked to decreased dopamine D2/3 receptor availability in the ventral striatum. In the present study, we investigated, using longitudinal positron emission tomography (PET), the effects of orally administered methylphenidate (MPH), a first-line treatment for attention deficit hyperactivity disorder, on D2/3 receptor availability in the dorsal and ventral striatum and related these changes to impulsivity. Rats were screened for impulsive behavior on a five-choice serial reaction time task. After a baseline PET scan with the D2/3 ligand [(18)F]fallypride, rats received 6 mg/kg MPH, orally, twice each day for 28 d. Rats were then reassessed for impulsivity and underwent a second [(18)F]fallypride PET scan. Before MPH treatment, we found that D2/3 receptor availability was significantly decreased in the left but not the right ventral striatum of high-impulse (HI) rats compared with low-impulse (LI) rats. MPH treatment increased impulsivity in LI rats, and modulated impulsivity and D2/3 receptor availability in the dorsal and ventral striatum of HI rats through inverse relationships with baseline levels of impulsivity and D2/3 receptor availability, respectively. However, we found no relationship between the effects of MPH on impulsivity and D2/3 receptor availability in any of the striatal subregions investigated. These findings indicate that trait-like impulsivity is associated with decreased D2/3 receptor availability in the left ventral striatum, and that stimulant drugs modulate impulsivity and striatal D2/3 receptor availability through independent mechanisms.This work was funded by Medical Research Council Grant G0701500, and by a joint award from the Medical Research Council (Grant G1000183) and the Wellcome Trust (Grant 093875/Z/10/Z) in support of the Behavioural and Clinical Neuroscience Institute at the University of Cambridge. We also acknowledge funding from the Medical Research Council in support of the ICCAM addiction cluster in the United Kingdom (G1000018). B.J. is supported by grants from the AXA Research Fund and the Australian National Health and Medical Research Council (Grant 1016313).This is the author accepted manuscript. The final version is available from Society for Neuroscience via http://doi.org/10.1523/JNEUROSCI.3890-14.201
- …