250 research outputs found
Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region
The study of transfer-induced gamma-decay probabilities is very useful for
understanding the surrogate-reaction method and, more generally, for
constraining statistical-model calculations. One of the main difficulties in
the measurement of gamma-decay probabilities is the determination of the
gamma-cascade detection efficiency. In [Nucl. Instrum. Meth. A 700, 59 (2013)]
we developed the Extrapolated Efficiency Method (EXEM), a new method to measure
this quantity. In this work, we have applied, for the first time, the EXEM to
infer the gamma-cascade detection efficiency in the actinide region. In
particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np
reactions. We have performed Hauser-Feshbach calculations to interpret our
results and to verify the hypothesis on which the EXEM is based. The
determination of fission and gamma-decay probabilities of 239Np below the
neutron separation energy allowed us to validate the EXEM
Preliminary results on the 233U capture cross section and alpha ratio measured at n_TOF (CERN) with the fission tagging technique
233U is of key importance among the fissile nuclei in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section, which is on average about one order of magnitude lower than the fission cross-section.The accuracy in the measurement of the 233U capture cross-section depends crucially onan efficient capture-fission discrimination, thus a combined set-up of fission and ¿-detectors is needed. A measurement of the 233U capture cross-section and capture-to-fissionratio was performed at the CERN n_TOF facility. The Total Absorption Calorimeter (TAC) of n_TOF was employed as ¿-detector coupled with a novel compact ionization chamber as fission detector. A brief description of the experimental set-up will be given, and essential parts of the analysis procedure as well as the preliminary response of the set-up to capture are presented and discussedPostprint (published version
Scissors resonance in the quasi-continuum of Th, Pa and U isotopes
The gamma-ray strength function in the quasi-continuum has been measured for
231-233Th, 232,233Pa and 237-239U using the Oslo method. All eight nuclei show
a pronounced increase in gamma strength at omega_SR approx 2.4 MeV, which is
interpreted as the low-energy M1 scissors resonance (SR). The total strength is
found to be B_SR = 9-11 mu_N^2 when integrated over the 1 - 4 MeV gamma-energy
region. The SR displays a double-hump structure that is theoretically not
understood. Our results are compared with data from (gamma, gamma') experiments
and theoretical sum-rule estimates for a nuclear rigid-body moment of inertia.Comment: 11 pages, 9 figure
A one-dimensional lattice model for a quantum mechanical free particle
Two types of particles, A and B with their corresponding antiparticles, are
defined in a one dimensional cyclic lattice with an odd number of sites. In
each step of time evolution, each particle acts as a source for the
polarization field of the other type of particle with nonlocal action but with
an effect decreasing with the distance: A -->...\bar{B} B \bar{B} B \bar{B} ...
; B --> A \bar{A} A \bar{A} A ... . It is shown that the combined distribution
of these particles obeys the time evolution of a free particle as given by
quantum mechanics.Comment: 8 pages. Revte
Fission cross section measurements for 240Pu, 242Pu
This report comprises the deliverable 1.5 of the ANDES project (EURATOM contract FP7-249671) of Task 3 "High accuracy measurements for fission" of Work Package 1 entitled "Measurements for advanced reactor systems". This deliverables provide evidence of a successful completion of the objectives of Task 3.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard
A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes
In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the 233U(n,y) cross-section at the n_TOF facility at CERN, where it was coupled to the n_TOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.This work was partially supported by the French NEEDS/NACRE Project and by the European Commission within HORIZON2020 via the EURATOM Project EUFRAT
Mechanical Bistable Structures for Microrobotics and Mesorobotics from Microfabrication to Additive Manufacturing
- …
