14 research outputs found
Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence
Inflammation is a double-edged sword with both detrimental and
beneficial consequences. Understanding of the mechanisms of crosstalk
between the inflammatory milieu and human adult mesenchymal stem cells
is an important basis for clinical efforts. Here, we investigate changes
in the transcriptional response of human adipose-derived stem cells to
physiologically relevant levels of IL-2 (IL-2 priming) upon replicative
senescence. Our data suggest that replicative senescence might
dramatically impede human mesenchymal stem cell (MSC) function via
global transcriptional deregulation in response to IL-2. We uncovered a
novel senescence-associated transcriptional signature in human
adipose-derived MSCs hADSCs after exposure to pro-inflammatory
environment: significant enhancement of the expression of the genes
encoding potent growth factors and cytokines with anti-inflammatory and
migration-promoting properties, as well as genes encoding angiogenic and
antiapoptotic promoting factors, all of which could participate in the
establishment of a unique microenvironment. We observed transcriptional
up-regulation of critical components of the nitric oxide synthase
pathway (iNOS) in hADSCs upon replicative senescence suggesting, that
senescent stem cells can acquire metastasis-promoting properties via
stem cell-mediated immunosuppression. Our study highlights the
importance of age as a factor when designing cell-based or
pharmacological therapies for older patients and predicts measurable
biomarkers characteristic of an environment that is conducive to cancer
cells invasiveness and metastasis.LM and BGG was supported by grants from the Spanish Ministry of Science
and Innovation (SAF 2010-15239) to BGG and. LMP are supported by FPI
fellowships from the Spanish Ministry, and BGG acknowledges support from
the ``Ramon y Cajal´´ tenure track programme from the Spanish Ministry
of Science and Innovation (RYC2009-04669). AS and AA are fellows of
Bolashak International Scholarship, AA, AN, AS are sponsored by KazNMU
sponsored program.S
Opposing activities of oncogenic MIR17HG and tumor suppressive MIR100HG clusters and their gene targets regulate replicative senescence in human adult stem cells.
Growing evidence suggests that many diseases of aging, including diseases associated with robust changes and adipose deports, may be caused by resident adult stem cell exhaustion due to the process called cellular senescence. Understanding how microRNA pathways can regulate cellular senescence is crucial for the development of novel diagnostic and therapeutic strategies to combat these pathologies. Herein, using integrated transcriptomic and semi-quantitative proteomic analysis, we provide a system level view of the regulation of human adipose-derived stem cell senescence by a subset of mature microRNAs (termed senescence-associated-microRNAs) produced by biogenesis of oncogenic MIR17HG and tumor-suppressive MIR100HG clusters. We demonstrate functional significance of these mature senescence-associated-microRNAs in the process of replicative senescence of human adipose-derived stem cells ex-vivo and define a set of senescence-associated-microRNA gene targets that are able to elicit, modulate and, most importantly, balance intimate connections between oncogenic and senescent events
Unravelling the Basic Calcium Phosphate crystal-dependent chondrocyte protein secretome; a role for TGF-β signaling.
ObjectiveBasic Calcium Phosphate crystals play an active role in the progression of osteoarthritis. However, the cellular consequences remain largely unknown. Therefore, we characterized for the first time the changes in the protein secretome of human OA articular chondrocytes as a result of BCP stimulation using two unbiased proteomic analysis methods.MethodIsolated human OA articular chondrocytes were stimulated with BCP crystals and examined by RT-qPCR and ELISA after twenty-four and forty-eight hours. Forty-eight hours conditioned media were analysed by label-free LC-MS/MS and an antibody array. The activity of BCP dependent TGF-β signalling was analysed by RT-qPCR and luciferase reporter assays. The molecular consequences regarding BCP-dependent TGF-β signalling on BCP-dependent IL-6 were investigated using specific pathway inhibitors.ResultsSynthesized BCP crystals induced IL-6 expression and secretion upon stimulation of human articular chondrocytes. Concomitant induction of catabolic gene expression was observed. Analysis of conditioned media revealed a complex and diverse response with a large number of proteins involved in TGF-β signalling, both in activation of latent TGF-β and TGF-β superfamily members, which were increased compared to non-stimulated OA chondrocytes. Activity of this BCP driven TGF-β signalling was confirmed by increased activity of expression of TGF-β target genes and luciferase reporters. Inhibition of BCP driven TGF-β signalling resulted in decreased IL-6 expression and secretion with a moderate effect on catabolic gene expression.ConclusionBCP crystal stimulation resulted in a complex and diverse chondrocyte protein secretome response. An important role for BCP-dependent TGF-β signaling was identified in development of a pro-inflammatory environment
Analysis of RNA polyadenylation in healthy and osteoarthritic human articular cartilage
ABSTRACTAn important transcript structural element is its 3’ polyadenylated (polyA) tail, which defines the 3’ boundary of the transcript’s genetic information and is necessary for transcript stability. The position of the polyA tail can vary, with multiple alternatively polyadenylated (APA) transcripts existing for a single gene. This can lead to different length transcripts which can vary in their 3’ regulatory domains and even by inclusion or exclusion of protein-coding introns. The distribution of polyA tail location on articular chondrocyte transcripts has not been examined before and this study aimed to be the first to define polyadenylation events in human chondrocytes using age-matched healthy and osteoarthritic knee articular cartilage samples. Total RNA was isolated from frozen tissue samples and analysed using the QuantSeqReverse 3’ RNA Sequencing approach, where each read runs 3’ to 5’ from within the polyA tail into the transcript and will contains a distinct polyA site. Initial analysis of differential expression of overall transcript abundance identified by the reads showed significant disruption to transcript levels when healthy samples were compared to osteoarthritic ones. As we expected, differentially regulated genes were enriched with functionalities that were strongly associated with joint pathology. As part of this analysis, we also identified a substantial number of differentially expressed long non-coding RNAs that had not been linked to osteoarthritis before. Subsequent examination of polyA site data allowed us to deifne the extent of site usage across all the samples. This included identification of chondrocyte genes that exhibited the greatest amount polyA site variation. When comparing healthy and osteoarthritic samples, we found that differential use of polyadenylation sites was modest. However, of the small number of genes affected, there was clear potential for the change in polyadenylation site usage elicited by pathology to have functional relevance. We examined two genes, OSMR and KMT2A, in more detail, defining how APA affects transcript turnover and then, in the case of OSMR, identifying that APA is sensitive to inflammatory cytokine stimulation. Overall, we have characterised the polyadenylation landscape of human knee articular chondrocytes but can conclude that osteoarthritis does not elicit a widespread change in their polyadenylation site usage. This finding differentiates knee osteoarthritis from pathologies such as cancer where APA is more commonly observed.</jats:p
Analysis of RNA Polyadenylation in Healthy and Osteoarthritic Human Articular Cartilage.
Polyadenylation (polyA) defines the 3' boundary of a transcript's genetic information. Its position can vary and alternative polyadenylation (APA) transcripts can exist for a gene. This causes variance in 3' regulatory domains and can affect coding sequence if intronic events occur. The distribution of polyA sites on articular chondrocyte transcripts has not been studied so we aimed to define their transcriptome-wide location in age-matched healthy and osteoarthritic knee articular cartilage. Total RNA was isolated from frozen tissue samples and analysed using the QuantSeq-Reverse 3' RNA sequencing approach, where each read runs 3' to 5' from within the polyA tail into the transcript and contains a distinct polyA site. Differential expression of transcripts was significant altered between healthy and osteoarthritic samples with enrichment for functionalities that were strongly associated with joint pathology. Subsequent examination of polyA site data allowed us to define the extent of site usage across all the samples. When comparing healthy and osteoarthritic samples, we found that differential use of polyadenylation sites was modest. However, in the genes affected, there was potential for the APA to have functional relevance. We have characterised the polyadenylation landscape of human knee articular chondrocytes and conclude that osteoarthritis does not elicit a widespread change in their polyadenylation site usage. This finding differentiates knee osteoarthritis from pathologies such as cancer where APA is more commonly observed
Analysis of RNA Polyadenylation in Healthy and Osteoarthritic Human Articular Cartilage
Polyadenylation (polyA) defines the 3′ boundary of a transcript’s genetic information. Its position can vary and alternative polyadenylation (APA) transcripts can exist for a gene. This causes variance in 3′ regulatory domains and can affect coding sequence if intronic events occur. The distribution of polyA sites on articular chondrocyte transcripts has not been studied so we aimed to define their transcriptome-wide location in age-matched healthy and osteoarthritic knee articular cartilage. Total RNA was isolated from frozen tissue samples and analysed using the QuantSeq-Reverse 3′ RNA sequencing approach, where each read runs 3′ to 5′ from within the polyA tail into the transcript and contains a distinct polyA site. Differential expression of transcripts was significant altered between healthy and osteoarthritic samples with enrichment for functionalities that were strongly associated with joint pathology. Subsequent examination of polyA site data allowed us to define the extent of site usage across all the samples. When comparing healthy and osteoarthritic samples, we found that differential use of polyadenylation sites was modest. However, in the genes affected, there was potential for the APA to have functional relevance. We have characterised the polyadenylation landscape of human knee articular chondrocytes and conclude that osteoarthritis does not elicit a widespread change in their polyadenylation site usage. This finding differentiates knee osteoarthritis from pathologies such as cancer where APA is more commonly observed