138 research outputs found

    Multispectral pansharpening with radiative transfer-based detail-injection modeling for preserving changes in vegetation cover

    Get PDF
    Whenever vegetated areas are monitored over time, phenological changes in land cover should be decoupled from changes in acquisition conditions, like atmospheric components, Sun and satellite heights and imaging instrument. This especially holds when the multispectral (MS) bands are sharpened for spatial resolution enhancement by means of a panchromatic (Pan) image of higher resolution, a process referred to as pansharpening. In this paper, we provide evidence that pansharpening of visible/near-infrared (VNIR) bands takes advantage of a correction of the path radiance term introduced by the atmosphere, during the fusion process. This holds whenever the fusion mechanism emulates the radiative transfer model ruling the acquisition of the Earth's surface from space, that is for methods exploiting a multiplicative, or contrast-based, injection model of spatial details extracted from the panchromatic (Pan) image into the interpolated multispectral (MS) bands. The path radiance should be estimated and subtracted from each band before the product by Pan is accomplished. Both empirical and model-based estimation techniques of MS path radiances are compared within the framework of optimized algorithms. Simulations carried out on two GeoEye-1 observations of the same agricultural landscape on different dates highlight that the de-hazing of MS before fusion is beneficial to an accurate detection of seasonal changes in the scene, as measured by the normalized differential vegetation index (NDVI)

    A novel semi-fragile forensic watermarking scheme for remote sensing images

    Get PDF
    Peer-reviewedA semi-fragile watermarking scheme for multiple band images is presented. We propose to embed a mark into remote sensing images applying a tree structured vector quantization approach to the pixel signatures, instead of processing each band separately. The signature of themmultispectral or hyperspectral image is used to embed the mark in it order to detect any significant modification of the original image. The image is segmented into threedimensional blocks and a tree structured vector quantizer is built for each block. These trees are manipulated using an iterative algorithm until the resulting block satisfies a required criterion which establishes the embedded mark. The method is shown to be able to preserve the mark under lossy compression (above a given threshold) but, at the same time, it detects possibly forged blocks and their position in the whole image.Se presenta un esquema de marcas de agua semi-frágiles para múltiples imágenes de banda. Proponemos incorporar una marca en imágenes de detección remota, aplicando un enfoque de cuantización del vector de árbol estructurado con las definiciones de píxel, en lugar de procesar cada banda por separado. La firma de la imagen hiperespectral se utiliza para insertar la marca en el mismo orden para detectar cualquier modificación significativa de la imagen original. La imagen es segmentada en bloques tridimensionales y un cuantificador de vector de estructura de árbol se construye para cada bloque. Estos árboles son manipulados utilizando un algoritmo iteractivo hasta que el bloque resultante satisface un criterio necesario que establece la marca incrustada. El método se muestra para poder preservar la marca bajo compresión con pérdida (por encima de un umbral establecido) pero, al mismo tiempo, detecta posiblemente bloques forjados y su posición en la imagen entera.Es presenta un esquema de marques d'aigua semi-fràgils per a múltiples imatges de banda. Proposem incorporar una marca en imatges de detecció remota, aplicant un enfocament de quantització del vector d'arbre estructurat amb les definicions de píxel, en lloc de processar cada banda per separat. La signatura de la imatge hiperespectral s'utilitza per inserir la marca en el mateix ordre per detectar qualsevol modificació significativa de la imatge original. La imatge és segmentada en blocs tridimensionals i un quantificador de vector d'estructura d'arbre es construeix per a cada bloc. Aquests arbres són manipulats utilitzant un algoritme iteractiu fins que el bloc resultant satisfà un criteri necessari que estableix la marca incrustada. El mètode es mostra per poder preservar la marca sota compressió amb pèrdua (per sobre d'un llindar establert) però, al mateix temps, detecta possiblement blocs forjats i la seva posició en la imatge sencera

    Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution

    Get PDF
    The recent advancement of deep learning techniques has made great progress on hyperspectral image super-resolution (HSI-SR). Yet the development of unsupervised deep networks remains challenging for this task. To this end, we propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet for short, to enhance the spatial resolution of HSI by means of higher-spatial-resolution multispectral image (MSI). Inspired by coupled spectral unmixing, a two-stream convolutional autoencoder framework is taken as backbone to jointly decompose MS and HS data into a spectrally meaningful basis and corresponding coefficients. CUCaNet is capable of adaptively learning spectral and spatial response functions from HS-MS correspondences by enforcing reasonable consistency assumptions on the networks. Moreover, a cross-attention module is devised to yield more effective spatial-spectral information transfer in networks. Extensive experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models, demonstrating the superiority of the CUCaNet in the HSI-SR application. Furthermore, the codes and datasets will be available at: https://github.com/danfenghong/ECCV2020_CUCaNet

    Comparison of different fusion algorithms in urban and agricultural areas using sar (palsar and radarsat) and optical (spot) images

    Get PDF
    Image fusion techniques of remote sensing data are formal frameworks for merging and using images originating from different sources. This research investigates the quality assessment of Synthetic Aperture Radar (SAR) data fusion with optical imagery. Two different SAR data from different sensors namely RADARSAT-1 and PALSAR were fused with SPOT-2 data. Both SAR data have the same resolutions and polarisations; however images were gathered in different frequencies as C band and L band respectively. This paper contributes to the comparative evaluation of fused data for understanding the performance of implemented image fusion algorithms such as Ehlers, IHS (Intensity-Hue-Saturation), HPF (High Pass Frequency), two dimensional DWT (Discrete Wavelet Transformation), and PCA (Principal Component Analysis) techniques. Quality assessments of fused images were performed both qualitatively and quantitatively. For the statistical analysis; bias, correlation coefficient (CC), difference in variance (DIV), standard deviation difference (SDD), universal image quality index (UIQI) methods were applied on the fused images. The evaluations were performed by categorizing the test area into two as "urban" and "agricultural". It has been observed that some of the methods have enhanced either the spatial quality or preserved spectral quality of the original SPOT XS image to various degrees while some approaches have introduced distortions. In general we noted that Ehlers' spectral quality is far better than those of the other methods. HPF performs almost best in agricultural areas for both SAR images

    MTF-tailored multi-resolution analysis for fusion of multi-spectral and panchromatic images

    Get PDF
    This work presents a multi-resolution framework for merging a multi-spectral image having an arbitrary number of bands with a higher-resolution panchromatic observation. The fusion method relies on the generalised Laplacian pyramid (GLP), which is a multi-scale oversampled structure. The goal is to selectively perform injection of spatial-frequencies from an image to another with the constraint of thoroughly retaining the spectral information of the coarser data. The novel idea is that a model of the modulation transfer functions (MTF) of the multi-spectral scanner is exploited to design the GLP reduction filter. Thus, the inter-band structure model (IBSM), which is calculated at the coarser scale, where both MS and Pan data are available, can be extended to the finer scale, without the drawback of the poor enhancement occurring when MTFs are assumed to be ideal filters. Experiments carried out on QuickBird data demonstrate that a superior spatial enhancement, besides the spectral quality typical of injection methods, is achieved by means of the MTF-adjusted fusion

    Land cover classification of built-up areas through enhanced fuzzy nearest-mean reclustering of textural features from X- and C-band polarimetric SAR data

    No full text
    This paper describes a nonparametric algorithm based on fuzzy-reasoning concepts and suitable for land use classification, either supervised or unsupervised, starting from pixel features derived from SAR observations. To this purpose, two novel features describing scene inhomogeneity are utilized. The former relies on the joint density of estimated local standard deviation to local mean. The latter is a multiresolution coefficient of variation calculated in the. domain defined by the "a trous" wavelet transform. Pixel vectors constituted by features calculated from the backscattering coefficient(s) in one or more bands and/or polarizations are clustered. Possible "a priori" knowledge coming from ground truth data may be used to initialize the procedure, but is not required. At each iteration step, pixels in the scene are classified based on the minimum attained by a weighted Euclidean distance from the centroid representative of each cluster. Upgrade of centroids is iteratively obtained both from the previously obtained classification map, and by thresholding a membership function of pixel vectors to each cluster. Such a function has been derived based on entropy maximization of the resulting clusters configuration and has the favorable property of preserving minor clusters. Experimental results carried out on SIR-C polarimetric and X-SAR data of the city of Pavia and its surroundings demonstrate the usefulness of a nonparametric classification to discriminate land use in general, and urban and built-up areas with different degrees of building density, in particular, from SAR observations analogous to those which are routinely available from ERS-2 and EnviSat, and will be provided by the COSMO-SkyMed upcoming mission. Pixel-based classification attains over 70% accuracy without any postprocessing
    corecore