363 research outputs found

    Dietary guideline adherence for gastroesophageal reflux disease.

    Get PDF
    BackgroundGastroesophageal reflux disease (GERD) is the most common gastrointestinal disease, and the cost of health care and lost productivity due to GERD is extremely high. Recently described side effects of long-term acid suppression have increased the interest in nonpharmacologic methods for alleviating GERD symptoms. We aimed to examine whether GERD patients follow recommended dietary guidelines, and if adherence is associated with the severity and frequency of reflux symptoms.MethodsWe conducted a population-based cross-sectional study within the Kaiser Permanente Northern California population, comparing 317 GERD patients to 182 asymptomatic population controls. All analyses adjusted for smoking and education.ResultsGERD patients, even those with moderate to severe symptoms or frequent symptoms, were as likely to consume tomato products and large portion meals as GERD-free controls and were even more likely to consume soft drinks and tea [odds ratio (OR) = 2.01 95% confidence interval (CI) 1.12-3.61; OR = 2.63 95% CI 1.24-5.59, respectively] and eat fried foods and high fat diet. The only reflux-triggering foods GERD patients were less likely to consume were citrus and alcohol [OR = 0.59; 95% CI: 0.35-0.97 for citrus; OR = 0.41 95% CI 0.19-0.87 for 1 + drink/day of alcohol]. The associations were similar when we excluded users of proton pump inhibitors.ConclusionsGERD patients consume many putative GERD causing foods as frequently or even more frequently than asymptomatic patients despite reporting symptoms. These findings suggest that, if dietary modification is effective in reducing GERD, substantial opportunities for nonpharmacologic interventions exist for many GERD patients

    Slow Fetal Heart Rate before Miscarriage in the Early First Trimester Predicts Fetal Aneuploidy in Women with Recurrent Pregnancy Loss

    Get PDF
    Establishing whether miscarriages result from fetal aneuploidy or other factors is important for treating recurrent pregnancy loss. We examined the relationship between fetal heart rate (FHR) before miscarriage in the early first trimester and fetal karyotype, analyzing 223 pregnant women with recurrent pregnancy loss. Among the pregnancies, 110 resulted in live births regarded as normal karyotype (the Norm-group). The other 113 pregnancies ended in miscarriage, and we categorized them into groups based on fetal karyotype, determined by chorionic villus sampling: the Misc-NK (normal karyotype) group, n=35 euploid cases; the Misc-CA1 (chromosomal abnormality) group, n=18 cases of aneuploidy with trisomies 13/18/21, Turner’s syndrome, or Klinefelter’s syndrome; and the Misc-CA2 subgroup, n=60 cases of other aneuploidies excluding those in the Misc-CA1 group. We compared the groups’ regression line slopes and intercepts for FHR by an analysis of covariance. The FHRs of the Norm, Misc-NK and Misc-CA1 groups increased from 36 to 49 days after fertilization, but did not significantly differ across these groups. The Misc-CA2 group’s FHR did not increase and significantly differed from the other three groups (p<0.01). These results suggest that the absence of an increase in FHR in early pregnancy may indicate the presence of chromosomal abnormalities causing miscarriage

    Sex-specific associations between body mass index, waist circumference and the risk of Barrett's oesophagus: a pooled analysis from the international BEACON consortium

    Get PDF
    Barrett’s oesophagus is a precursor lesion of oesophageal adenocarcinoma, a cancer that, in the USA, has increased in incidence over 600% during the past 40 years. Barrett’s oesophagus and oesophageal adenocarcinoma are much more common among men than among women; this finding is unexplained and most earlier studies lacked sufficient numbers of women to evaluate sex-specific risk factors. We leveraged the power of an international consortium to assess sex-specific relationships between body mass index (BMI), abdominal circumference and Barrett’s oesophagus

    The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits <i>Porphyromonas gingivalis</i>-induced expression of interleukin-8 by oral keratinocytes

    Get PDF
    Objective: The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes.&lt;p&gt;&lt;/p&gt; Materials and methods: Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to &lt;i&gt;Porphyromonas gingivalis&lt;/i&gt; in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to &lt;i&gt;P. gingivalis&lt;/i&gt; lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-blacell reporter assay.&lt;p&gt;&lt;/p&gt; Results: Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited &lt;i&gt;P. Gingivalis&lt;/i&gt;-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to &lt;i&gt;P. Gingivalis&lt;/i&gt; lipopolysaccharide.&lt;p&gt;&lt;/p&gt; Conclusion: These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.&lt;p&gt;&lt;/p&gt

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts

    Get PDF
    A series of ZnO nanoparticles decorated on multi-walled carbon nanotubes (ZnO/CNTs composites) was synthesized using a facile sol method. The intrinsic characteristics of as-prepared nanocomposites were studied using a variety of techniques including powder X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), transmission electron microscope (TEM), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET) surface area analyzer and X-ray photoelectron spectroscopy (XPS). Optical properties studied using UV–Vis diffuse reflectance spectroscopy confirmed that the absorbance of ZnO increased in the visible-light region with the incorporation of CNTs. In this study, degradation of Rhodamine B (RhB) as a dye pollutant was investigated in the presence of pristine ZnO nanoparticles and ZnO/CNTs composites using photocatalysis and sonocatalysis systems separately and simultaneously. The adsorption was found to be an essential factor in the degradation of the dye. The linear transform of the Langmuir isotherm curve was further used to determine the characteristic parameters for ZnO and ZCC-5 samples which were: maximum absorbable dye quantity and adsorption equilibrium constant. The natural sunlight and low power ultrasound were used as an irradiation source. The experimental kinetic data followed the pseudo-first order model in photocatalytic, sonocatalytic and sonophotocatalytic processes but the rate constant of sonophotocatalysis is higher than the sum of it at photocatalysis and sonocatalysis process. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of ZnO/CNTs photocatalyst. Chemical oxygen demand (COD) of textile wastewater was measured at regular intervals to evaluate the mineralization of wastewater

    The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the strategy for tissue regeneration using mesenchymal stem cells (MSCs) for transplantation, it is necessary that MSCs be accumulated and kept in the target area. To accumulate MSCs effectively, we developed a novel technique for a magnetic targeting system with magnetically labeled MSCs and an external magnetic force. In this study, we examined the effect of an external magnetic force on magnetically labeled MSCs in terms of cell adhesion and proliferation.</p> <p>Methods</p> <p>Magnetically labeled MSCs were plated at the bottom of an insert under the influence of an external magnetic force for 1 hour. Then the inserts were turned upside down for between 1 and 24 hours, and the number of MSCs which had fallen from the membrane was counted. The gene expression of MSCs affected magnetic force was analyzed with microarray. In the control group, the same procedure was done without the external magnetic force.</p> <p>Results</p> <p>At 1 hour after the inserts were turned upside down, the average number of fallen MSCs in the magnetic group was significantly smaller than that in the control group, indicating enhanced cell adhesion. At 24 hours, the average number of fallen MSCs in the magnetic group was also significantly smaller than that in control group. In the magnetic group, integrin alpha2, alpha6, beta3 BP, intercellular adhesion molecule-2 (ICAM-2), platelet/endothelial cell adhesion molecule-1 (PECAM-1) were upregulated. At 1, 2 and 3 weeks after incubation, there was no statistical significant difference in the numbers of MSCs in the magnetic group and control group.</p> <p>Conclusions</p> <p>The results indicate that an external magnetic force for 1 hour enhances cell adhesion of MSCs. Moreover, there is no difference in cell proliferation after using an external magnetic force on magnetically labeled MSCs.</p
    • …
    corecore